METHODS: We performed a prospective study of consecutive adults with NAFLD who were scheduled for a liver biopsy at a tertiary hospital in Malaysia. Patients underwent VLFF and CAP measurements on the same day as their liver biopsy. Histopathology analyses of liver biopsy specimens were reported according to the Nonalcoholic Steatohepatitis Clinical Research Network scoring system. Stereologic analysis was performed using grid-point counting method combined with the Delesse principle.
RESULTS: We analyzed data from 97 patients (mean age 57.0 ± 10.1 years; 44.33% male; 91.8% obese; 95.9% centrally obese). Based on histopathology analysis, the area under receiver operating characteristic curve (AUROC) for VLFF in detection of steatosis grade ≥S2 was 0.92 and for CAP the AUROC was 0.65 (P < .001). Based on stereological analysis, the AUROC for VLFF for detection of steatosis grade ≥S2 was 0.92 and for CAP the AUROC was 0.63, (P = .002); for identification of steatosis grade S3, the AUROC for VLFF was 0.92 and for CAP the AUROC was 0.68 (P < .001).
CONCLUSIONS: In a prospective study of patients with NAFLD undergoing liver biopsy analysis, we found VLFF to more accurately determine grade of hepatic steatosis than CAP.
METHODS: Shear wave elastography assessments were performed in 75 CKD patients who underwent renal biopsy. The SWE-derived estimates of the tissue Young's modulus (YM), given as kilopascals (kPa), were measured. YM was correlated to patients' renal histological scores, broadly categorized into glomerular, tubulointerstitial and vascular scores.
RESULTS: Young's modulus correlates significantly with tubulointerstitial score (ρ = 0.442, P
METHODS: The proposed method uses a 2D contourlet transform and a set of texture features that are efficiently extracted from the transformed image. Then, the combination of a kernel discriminant analysis (KDA)-based feature reduction technique and analysis of variance (ANOVA)-based feature ranking technique was used, and the images were then classified into various stages of liver fibrosis.
RESULTS: Our 2D contourlet transform and texture feature analysis approach achieved a 91.46% accuracy using only four features input to the probabilistic neural network classifier, to classify the five stages of liver fibrosis. It also achieved a 92.16% sensitivity and 88.92% specificity for the same model. The evaluation was done on a database of 762 ultrasound images belonging to five different stages of liver fibrosis.
CONCLUSIONS: The findings suggest that the proposed method can be useful to automatically detect and classify liver fibrosis, which would greatly assist clinicians in making an accurate diagnosis.
METHODS: 220 patients underwent CT of the chest, abdomen and pelvis (CAP) using a standard FV protocol, and subsequently, a customised 1.0 mL/kg WBV protocol within one year. Both image sets were assessed for contrast enhancement using CT attenuation at selected regions-of-interest (ROIs). The visual image quality was evaluated by three radiologists using a 4-point Likert scale. Quantitative CT attenuation was correlated with the visual quality assessment to determine the HU's enhancement indicative of the image quality grades. Contrast media usage was calculated to estimate cost-savings from both protocols.
RESULTS: Mean patient age was 61 ± 14 years, and weight was 56.1 ± 8.7 kg. FV protocol produced higher contrast enhancement than WBV, p
METHOD: In the present study, three separate data cohorts containing 1288 breast lesions from three countries (Malaysia, Iran, and Turkey) were utilized for MLmodel development and external validation. The model was trained on ultrasound images of 725 breast lesions, and validation was done separately on the remaining data. An expert radiologist and a radiology resident classified the lesions based on the BI-RADS lexicon. Thirteen morphometric features were selected from a contour of the lesion and underwent a three-step feature selection process. Five features were chosen to be fed into the model separately and combined with the imaging signs mentioned in the BI-RADS reference guide. A support vector classifier was trained and optimized.
RESULTS: The diagnostic profile of the model with various input data was compared to the expert radiologist and radiology resident. The agreement of each approach with histopathologic specimens was also determined. Based on BI-RADS and morphometric features, the model achieved an area under the receiver operating characteristic (ROC) curve (AUC) of 0.885, which is higher than the expert radiologist and radiology resident performances with AUC of 0.814 and 0.632, respectively in all cohorts. DeLong's test also showed that the AUC of the ML protocol was significantly different from that of the expert radiologist (ΔAUCs = 0.071, 95%CI: (0.056, 0.086), P = 0.005).
CONCLUSIONS: These results support the possible role of morphometric features in enhancing the already well-excepted classification schemes.
METHODS: An unmatched hospital based case-control study was conducted from October 2002 to December 2016 in Selangor, Malaysia. A total of 3,683 cases and 3,980 controls were included in this study. Unconditional logistic regressions, adjusted for potential confounding factors, were conducted. The breast cancer risk factors were compared across four birth cohorts by ethnicity.
RESULTS: Ever breastfed, longer breastfeeding duration, a higher soymilk and soy product intake, and a higher level of physical activity were associated with lower risk of breast cancer. Chinese had the lowest breastfeeding rate, shortest breastfeeding duration, lowest parity and highest age of first full term pregnancy.
CONCLUSIONS: Our study shows that breastfeeding, soy intake and physical activity are modifiable risk factors for breast cancer. With the increasing incidence of breast cancer there is an urgent need to educate the women about lifestyle intervention they can take to reduce their breast cancer risk.