Displaying publications 21 - 40 of 52 in total

Abstract:
Sort:
  1. Lim CH, Soga T, Parhar IS
    Proc Natl Acad Sci U S A, 2023 Jan 17;120(3):e2117547120.
    PMID: 36623187 DOI: 10.1073/pnas.2117547120
    Social disturbance in interpersonal relationships is the primary source of stress in humans. Spexin (SPX, SPX1a in cichlid), an evolutionarily conserved neuropeptide with diverse physiological functions, is up-regulated in the brain during chronic social defeat stress in teleost. On the other hand, repeated exposure to social stress can lead to dysregulation of the monoaminergic system and increase the vulnerability of developing depression. Since dysfunction of the serotonin (5-hydroxytryptamine, 5-HT) system is associated with social stress and the pathophysiology of depression, the present study investigated the regulatory relationship between the central 5-HT system and SPX1a in the male teleost, Nile tilapia (Oreochromis niloticus). To identify stress factors that regulate SPX1a gene expression, cortisol, dexamethasone (DEX), and 5-HT were used to treat tilapia brain primary cultures. Our study shows cortisol and DEX treatment had no effect on SPX1a gene expression, but SPX1a gene expression was down-regulated following 5-HT treatment. Anatomical localization showed a close association between 5-HT immunoreactive projections and SPX1a neurons in the semicircular torus. In addition, 5-HT receptors (5-HT2B) were expressed in SPX1a neurons. SPX1a immunoreactive neurons and SPX1a gene expression were significantly increased in socially defeated tilapia. On the other hand, citalopram (antidepressant, 5-HT antagonist) treatment to socially defeated tilapia normalized SPX1a gene expression to control levels. Taken together, the present study shows that 5-HT is an upstream regulator of SPX1a and that the inhibited 5-HT activates SPX1a during social defeat.
  2. Soga T, Kitahashi T, Clarke IJ, Parhar IS
    Endocrinology, 2014 May;155(5):1944-55.
    PMID: 24605826 DOI: 10.1210/en.2013-1786
    Gonadotropin-inhibitory hormone (GnIH) neurons project to GnRH neurons to negatively regulate reproductive function. To fully explore the projections of the GnIH neurons, we created transgenic rats carrying an enhanced green fluorescent protein (EGFP) tagged to the GnIH promoter. With these animals, we show that EGFP-GnIH neurons are localized mainly in the dorsomedial hypothalamic nucleus (DMN) and project to the hypothalamus, telencephalon, and diencephalic thalamus, which parallels and confirms immunocytochemical and gene expression studies. We observed an age-related reduction in c-Fos-positive GnIH cell numbers in female rats. Furthermore, GnIH fiber appositions to GnRH neurons in the preoptic area were lessened in middle-aged females (70 weeks old) compared with their younger counterparts (9-12 weeks old). The fiber density in other brain areas was also reduced in middle-aged female rats. The expression of estrogen and progesterone receptors mRNA in subsets of EGFP-GnIH neurons was shown in laser-dissected single EGFP-GnIH neurons. We then examined estradiol-17β and progesterone regulation of GnIH neurons, using c-Fos presence as a marker. Estradiol-17β treatment reduced c-Fos labeling in EGFP-GnIH neurons in the DMN of young ovariectomized adult females but had no effect in middle-aged females. Progesterone had no effect on the number of GnIH cells positive for c-Fos. We conclude that there is an age-related decline in GnIH neuron number and GnIH inputs to GnRH neurons. We also conclude that the response of GnIH neurons to estrogen diminishes with reproductive aging.
  3. Soga T, Wong DW, Putteeraj M, Song KP, Parhar IS
    Neuroscience, 2012 Dec 6;225:172-84.
    PMID: 22960312 DOI: 10.1016/j.neuroscience.2012.08.061
    Postnatal treatment with selective serotonin reuptake inhibitors (SSRIs) has been found to affect brain development and the regulation of reproduction in rodent models. The normal masculinization process in the brain requires a transient decrease in serotonin (5-HT) levels in the brain during the second postnatal week. Strict regulation of androgen receptor (AR) and gonadotropin-releasing hormone (GnRH) expression is important to control male reproductive activity. Therefore, this study was designed to examine the effects of a potent SSRI (citalopram) on male sexual behavior and expression levels of AR and GnRH in adult male mice receiving either vehicle or citalopram (10mg/kg) daily during postnatal days 8-21. The citalopram-treated male mice showed altered sexual behavior, specifically a significant reduction in the number of intromissions preceding ejaculation compared with the vehicle-treated mice. The citalopram-treated male mice displayed elevated anxiety-like behavior in an open field test and lower locomotor activity in their home cage during the subjective night. Although there was no change in GnRH and AR mRNA levels in the preoptic area (POA), quantified by real-time polymerase chain reaction, immunostained AR cell numbers in the medial POA were decreased in the citalopram-treated male mice. These results suggest that the early-life inhibition of 5-HT transporters alters the regulation of AR expression in the medial POA, likely causing decreased sexual behavior and altered home cage activity in the subjective night.
  4. Soga T, Dalpatadu SL, Wong DW, Parhar IS
    Neuroscience, 2012 Aug 30;218:56-64.
    PMID: 22626647 DOI: 10.1016/j.neuroscience.2012.05.023
    Synthetic glucocorticoid (dexamethasone; DEX) treatment during the neonatal stage is known to affect reproductive activity. However, it is still unknown whether neonatal stress activates gonadotropin-inhibitory hormone (GnIH) synthesizing cells in the dorsomedial hypothalamus (DMH), which could have pronounced suppressive action on gonadotropin-releasing hormone (GnRH) neurons, leading to delayed pubertal onset. This study was designed to determine the effect of neonatal DEX (1.0mg/kg) exposure on reproductive maturation. Therefore, GnRH, GnIH and GnIH receptors, G-protein coupled receptors (GPR) 147 and GPR74 mRNA levels were measured using quantitative real-time PCR in female mice at postnatal (P) days 21, 30 and in estrus stage mice, aged between P45-50. DEX-treated females of P45-50 had delayed vaginal opening, and irregular estrus cycles and lower GnRH expression in the preoptic area (POA) when compared with age-matched controls. The expression levels of GPR147 and GPR74 mRNA in the POA increased significantly in DEX-treated female mice of P21 and P45-50 compared to controls. In addition, GPR147 and GPR74 mRNA expression was observed in laser captured single GnRH neurons in the POA. Although there was no difference in GnIH mRNA expression in the DMH, immunostained GnIH cell numbers in the DMH increased in DEX-treated females of P45-50 compared to controls. Taken together, the results show that the delayed pubertal onset could be due to the inhibition of GnRH gene expression after neonatal DEX treatment, which may be accounted for in part by the inhibitory signals from the up-regulated GnIH-GnIH receptor pathway to the POA.
  5. Soga T, Wong DW, Clarke IJ, Parhar IS
    Neuropharmacology, 2010 Jul-Aug;59(1-2):77-85.
    PMID: 20381503 DOI: 10.1016/j.neuropharm.2010.03.018
    Citalopram is the most potent selective serotonin reuptake inhibitor (SSRI) which is used as an antidepressant but causes sexual dysfunction. Whether citalopram induced sexual dysfunction is a result of gonadotropin-releasing hormone (GnRH), kisspeptin or RF-amide related peptide (RFRP) alteration is unknown. In this study, we tested mice for sexual behavior after vehicle (0.9% NaCl) and citalopram treatment (5 mg/kg) daily for 1 day (acute) and 21 or 28 days (chronic). Effects of acute and chronic treatments on neuronal numbers and mRNA expression of GnRH, kisspeptin and RFRP were measured. In addition, RFRP fiber projections to preoptic (POA)-GnRH neurons were analyzed using double-label immunohistochemistry. The expression of 14 different serotonin receptor types mRNA was examined in immunostained laser dissected single RFRP neurons in the dorsomedial hypothalamus (DMH), however only 11 receptors types were identified. Acute citalopram treatment did not affect sexual behavior, whereas, the total duration of intromission was reduced with chronic treatment. There was no effect in the expression of kisspeptin (neuronal numbers and mRNA) in the anteroventral periventricular nucleus and the arcuate nucleus and expression of GnRH (neuronal numbers and mRNA) in the POA after citalopram treatment. However, RFRP neuronal numbers in the DMH and fiber projections to the POA were significantly increased after chronic citalopram treatment, which suggests citalopram induced inhibition of sexual behavior involves the modulation of RFRP through serotonin receptors in the DMH.
  6. Kitahashi T, Ogawa S, Soga T, Sakuma Y, Parhar I
    Endocrinology, 2007 Dec;148(12):5822-30.
    PMID: 17823257
    The role of steroid/thyroid hormones in the regulation of endocrine cells at the level of the pituitary has remained unclear. Therefore, using single-cell quantitative real-time PCR, we examined absolute amounts of transcripts for nuclear receptors [estrogen receptors (ERs) alpha, beta, and gamma; androgen receptors (ARs) a and b; glucocorticoid receptors (GRs) 1, 2a, and 2b; and thyroid hormone receptors (TRs) alpha1, alpha2, and beta] in pituitary cells of immature (IM) and mature (M) male tilapia, Oreochromis niloticus. In the two reproductive stages, ACTH cells expressed only ERbeta, whereas all other pituitary cell types expressed ERalpha + beta, and a subpopulation coexpressed ARa, ARb, GR1, GR2b, and TRbeta but lacked ERgamma, GR2a, TRalpha1, and TRalpha2. IM males had high percentages of LH cells (IM 46.0% vs. M 10.0%), GH cells (IM 23.3% vs. M 7.9%), and prolactin cells (IM 68.8% vs. M 6.0%) with ERbeta, and TSH cells (IM 19.2% vs. M 0.0%) and MSH cells (IM 25.6% vs. M 0.0%) with ERalpha + TRbeta. A high percentage of FSH cells in IM males expressed ERbeta (IM 46.9% vs. M 18.8%), and FSH cells in M males showed significantly high GR1 transcripts (IM 76.0 +/- 5.0 vs. M 195.0 +/- 10.7 copies per cell; P < 0.05), suggesting that FSH cells are regulated differently in the two reproductive stages. Coexpression of ERalpha + beta in high percentages of cells of the GH family (GH, IM 43.8% vs. M 14.3%; prolactin, IM 8.3% vs. M 59.7%; somatolactin, IM 22.2% vs. M 42.2%) suggests that the expression of both ERs is important for functionality. Thus, differential coexpression of genes for nuclear receptors in subpopulations of pituitary cell types suggests multiple steroid/thyroid hormone regulatory pathways at the level of the pituitary during the two reproductive stages.
  7. Soga T, Lim WL, Khoo AS, Parhar IS
    PMID: 26973595 DOI: 10.3389/fendo.2016.00015
    Kisspeptin, a newly discovered neuropeptide, regulates gonadotropin-releasing hormone (GnRH). Kisspeptins are a large RF-amide family of peptides. The kisspeptin coded by KiSS-1 gene is a 145-amino acid protein that is cleaved to C-terminal peptide kisspeptin-10. G-protein-coupled receptor 54 (GPR54) has been identified as a kisspeptin receptor, and it is expressed in GnRH neurons and in a variety of cancer cells. In this study, enhanced green fluorescent protein (EGFP) labeled GnRH cells with migratory properties, which express GPR54, served as a model to study the effects of kisspeptin on cell migration. We monitored EGFP-GnRH neuronal migration in brain slide culture of embryonic day 14 transgenic rat by live cell imaging system and studied the effects of kisspeptin-10 (1 nM) treatment for 36 h on GnRH migration. Furthermore, to determine kisspeptin-induced molecular pathways related with apoptosis and cytoskeletal changes during neuronal migration, we studied the expression levels of candidate genes in laser-captured EGFP-GnRH neurons by real-time PCR. We found that there was no change in the expression level of genes related to cell proliferation and apoptosis. The expression of ankyrin repeat domain-containing protein (ankrd) 26 in EGFP-GnRH neurons was upregulated by the exposure to kisspeptin. These studies suggest that ankrd 26 gene plays an unidentified role in regulating neuronal movement mediated by kisspeptin-GPR54 signaling, which could be a potential pathway to suppress cell migration.
  8. Moriya S, Soga T, Wong DW, Parhar IS
    Neurosci Lett, 2016 May 27;622:67-71.
    PMID: 27113202 DOI: 10.1016/j.neulet.2016.04.052
    The decrease in serotonergic neurotransmission during aging can increase the risk of neuropsychiatric diseases such as depression in elderly population and decline the reproductive system. Therefore, it is important to understand the age-associated molecular mechanisms of brain aging. In this study, the effect of aging and chronic escitalopram (antidepressant) treatment to admit mice was investigated by comparing transcriptomes in the preoptic area (POA) which is a key nucleus for reproduction. In the mid-aged brain, the immune system-related genes were increased and hormone response-related genes were decreased. In the escitalopram treated brains, transcription-, granule cell proliferation- and vasoconstriction-related genes were increased and olfactory receptors were decreased. Since homeostasis and neuroprotection-related genes were altered in both of mid-age and escitalopram treatment, these genes could be important for serotonin related physiologies in the POA.
  9. Singh R, Bansal Y, Parhar I, Kuhad A, Soga T
    Neurochem Int, 2019 12;131:104545.
    PMID: 31494132 DOI: 10.1016/j.neuint.2019.104545
    Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
  10. Lim CH, Soga T, Levavi-Sivan B, Parhar IS
    Sci Rep, 2020 05 06;10(1):7666.
    PMID: 32376994 DOI: 10.1038/s41598-020-64639-4
    Spexin (SPX), a neuropeptide evolutionarily conserved from fish to mammals, is widely distributed in the brain and peripheral tissues and associated with various physiological functions. Recently SPX has been suggested to be involved in neurological mechanism of stress. The current study investigates the involvement of SPX in chronic social defeat stress, using male teleost, the Nile tilapia (Oreochromis niloticus) as an animal model due to its distinct social hierarchy of dominant and subordinate relationship. The tilapia genome has SPX1a and SPX1b but has no SPX2. In the Nile tilapia, we localized SPX1a and SPX1b in the brain using in-situ hybridization. Next, using qPCR we examined gene expression of SPX1a and SPX1b in chronically stress (socially defeated) fish. SPX1a expressing cells were localized in the semicircular torus of the midbrain region and SPX1b expressing cells in the telencephalon. Chronically stress fish showed elevated plasma cortisol levels; with an upregulation of SPX1a and SPX1b gene expression in the brain compared to non-stress (control) fish. Since social defeat is a source of stress, the upregulated SPX mRNA levels during social defeat suggests SPX as a potentially inhibitory neuropeptide capable of causing detrimental changes in behaviour and physiology.
  11. Putteeraj M, Soga T, Ubuka T, Parhar IS
    PMID: 27630616 DOI: 10.3389/fendo.2016.00121
    Reproduction is associated with the circadian system, primarily as a result of the connectivity between the biological clock in the suprachiasmatic nucleus (SCN) and reproduction-regulating brain regions, such as preoptic area (POA), anteroventral periventricular nucleus (AVPV), and arcuate nucleus (ARC). Networking of the central pacemaker to these hypothalamic brain regions is partly represented by close fiber appositions to specialized neurons, such as kisspeptin and gonadotropin-releasing hormone (GnRH) neurons; accounting for rhythmic release of gonadotropins and sex steroids. Numerous studies have attempted to dissect the neurochemical properties of GnRH neurons, which possess intrinsic oscillatory features through the presence of clock genes to regulate the pulsatile and circadian secretion. However, less attention has been given to kisspeptin, the upstream regulator of GnRH and a potent mediator of reproductive functions including puberty. Kisspeptin exerts its stimulatory effects on GnRH secretion via its cognate Kiss-1R receptor that is co-expressed on GnRH neurons. Emerging studies have found that kisspeptin neurons oscillate on a circadian basis and that these neurons also express clock genes that are thought to regulate its rhythmic activities. Based on the fiber networks between the SCN and reproductive nuclei such as the POA, AVPV, and ARC, it is suggested that interactions among the central biological clock and reproductive neurons ensure optimal reproductive functionality. Within this neuronal circuitry, kisspeptin neuronal system is likely to "time" reproduction in a long term during development and aging, in a medium term to regulate circadian or estrus cycle, and in a short term to regulate pulsatile GnRH secretion.
  12. Lim CH, Lee MYM, Soga T, Parhar I
    PMID: 31275244 DOI: 10.3389/fendo.2019.00379
    Spexin (SPX) is a novel neuropeptide, which was first identified in the human genome using bioinformatics. Since then, orthologs of human SPX have been identified in mammalian and non-mammalian vertebrates. The mature sequence of SPX, NWTPQAMLYLKGAQ, is evolutionally conserved across vertebrate species, with some variations in teleost species where Ala at position 13 is substituted by Thr. In mammals, the gene structure of SPX comprises six exons and five introns, however, variation exists within non-mammalian species, goldfish and zebrafish having five exons while grouper has six exons. Phylogenetic and synteny analysis, reveal that SPX is grouped together with two neuropeptides, kisspeptin (KISS) and galanin (GAL) as a family of peptides with a common evolutionary ancestor. A paralog of SPX, termed SPX2 has been identified in non-mammalians but not in the mammalian genome. Ligand-receptor interaction study also shows that SPX acts as a ligand for GAL receptor 2 (2a and 2b in non-mammalian vertebrates) and 3. SPX acts as a neuromodulator with multiple central and peripheral physiological roles in the regulation of insulin release, fat metabolism, feeding behavior, and reproduction. Collectively, this review provides a comprehensive overview of the evolutionary diversity as well as molecular and physiological roles of SPX in mammalian and non-mammalian vertebrate species.
  13. Soga T, Nakajima S, Kawaguchi M, Parhar IS
    PMID: 32739332 DOI: 10.1016/j.pnpbp.2020.110053
    Extreme stress is closely linked with symptoms of depression. Chronic social stress can cause structural and functional changes in the brain. These changes are associated with dysfunction of neuroprotective signalling that is necessary for cell survival, growth, and maturation. Reduced neuronal numbers and volume of brain regions have been found in depressed patients, which may be caused by decreased cell survival and increased cell death. Elucidating the mechanism underlying the degeneration of the neuroprotective system in social stress-induced depression is important for developing neuroprotective measures. The Repressor Element 1 Silencing Transcription Factor (REST) also known as Neuron-Restrictive Silencing Factor (NRSF) has been reported as a neuroprotective molecule in certain neurological disorders. Decreased expression levels of REST/NRSF in the nucleus can induce death-related gene expression, leading to neuronal death. Under physiological stress conditions, REST/NRSF over expression is known to activate neuronal survival in the brain. Alterations in REST/NRSF expression in the brain has been reported in stressed animal models and in the post-mortem brain of patients with depression. Here, we highlight the neuroprotective function of REST/NRSF and discuss dysregulation of REST/NRSF and neuronal damage during social stress and depression.
  14. Bansal Y, Singh R, Parhar I, Kuhad A, Soga T
    Front Pharmacol, 2019;10:452.
    PMID: 31164818 DOI: 10.3389/fphar.2019.00452
    Depression is an incapacitating neuropsychiatric disorder. The serotonergic system in the brain plays an important role in the pathophysiology of depression. However, due to delayed and/or poor performance of selective serotonin reuptake inhibitors in treating depressive symptoms, the role of the serotonergic system in depression has been recently questioned further. Evidence from recent studies suggests that increased inflammation and oxidative stress may play significant roles in the pathophysiology of depression. The consequences of these factors can lead to the neuroprogression of depression, involving neurodegeneration, astrocytic apoptosis, reduced neurogenesis, reduced plasticity (neuronal and synaptic), and enhanced immunoreactivity. Specifically, increased proinflammatory cytokine levels have been shown to activate the kynurenine pathway, which causes increased production of quinolinic acid (QA, an N-Methyl-D-aspartate agonist) and decreases the synthesis of serotonin. QA exerts many deleterious effects on the brain via mechanisms including N-methyl-D-aspartate excitotoxicity, increased oxidative stress, astrocyte degeneration, and neuronal apoptosis. QA may also act directly as a pro-oxidant. Additionally, the nuclear translocation of antioxidant defense factors, such as nuclear factor (erythroid-derived 2)-like 2 (Nrf2), is downregulated in depression. Hence, in the present review, we discuss the role of QA in increasing oxidative stress in depression by modulating the nuclear translocation of nuclear factor (erythroid-derived 2)-like 2 and thus affecting the synthesis of antioxidant enzymes.
  15. Simon C, Soga T, Okano HJ, Parhar I
    Cell Biosci, 2021 Nov 19;11(1):196.
    PMID: 34798911 DOI: 10.1186/s13578-021-00709-y
    Dementia with Lewy bodies (DLB) is epitomized by the pathognomonic manifestation of α-synuclein-laden Lewy bodies within selectively vulnerable neurons in the brain. By virtue of prion-like inheritance, the α-synuclein protein inexorably undergoes extensive conformational metamorphoses and culminate in the form of fibrillar polymorphs, instigating calamitous damage to the brain's neuropsychological networks. This epiphenomenon is nebulous, however, by lingering uncertainty over the quasi "pathogenic" behavior of α-synuclein conformers in DLB pathobiology. Despite numerous attempts, a monolithic "α-synuclein" paradigm that is able to untangle the enigma enshrouding the clinicopathological spectrum of DLB has failed to emanate. In this article, we review conceptual frameworks of α-synuclein dependent cell-autonomous and non-autonomous mechanisms that are likely to facilitate the transneuronal spread of degeneration through the neuraxis. In particular, we describe how the progressive demise of susceptible neurons may evolve from cellular derangements perpetrated by α-synuclein misfolding and aggregation. Where pertinent, we show how these bona fide mechanisms may mutually accentuate α-synuclein-mediated neurodegeneration in the DLB brain.
  16. Camerino MA, Liu M, Moriya S, Kitahashi T, Mahgoub A, Mountford SJ, et al.
    J. Pept. Sci., 2016 Jun;22(6):406-14.
    PMID: 27282137 DOI: 10.1002/psc.2883
    Kisspeptin analogues with improved metabolic stability may represent important ligands in the study of the kisspeptin/KISS1R system and have therapeutic potential. In this paper we assess the activity of known and novel kisspeptin analogues utilising a dual luciferase reporter assay in KISS1R-transfected HEK293T cells. In general terms the results reflect the outcomes of other assay formats and a number of potent agonists were identified among the analogues, including β(2) -hTyr-modified and fluorescently labelled forms. We also showed, by assaying kisspeptin in the presence of protease inhibitors, that proteolysis of kisspeptin activity within the reporter assay itself may diminish the agonist outputs. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.
  17. Mitra NK, Goh TE, Bala Krishnan T, Nadarajah VD, Vasavaraj AK, Soga T
    Int J Clin Exp Pathol, 2013;6(8):1505-15.
    PMID: 23923068
    Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disease of idiopathic etiology. Glutamate excitotoxicity is one of the proposed hypotheses causing progressive death of motor neurons. We aimed to develop an experimental animal model of this disease to enhance the knowledge of pathophysiological mechanism of ALS. Male Wistar rats were infused with Kainic acid (KA) intra-cisternally for 5 days at the dosage of 50 fmol/day and 150 fmol/day. Locomotor activity, sensory function and histological changes in cervical and lumbar sections of spinal cord were evaluated. Glial Fibrillary Acidic Protein (GFAP) and Neurofilament Protein (NFP) were used as immunohistochemical marker for reactive astrogliosis and neuronal damage respectively. Specific Superoxide Dismutase (SOD) activity of spinal cord was estimated. The locomotor activity in the parameter of observed mean action time remained reduced on 14(th) day after administration of KA. Spinal motor neurons under Nissl stain showed pyknosis of nucleus and vacuolation of neuropil. GFAP expression increased significantly in the lumbar section of the spinal cord with high dose of KA treatment (p<0.05). NFP was expressed in axonal fibres around the neurons in KA-treated rats. A significant increase in specific SOD activity in both cervical and lumbar sections of the spinal cord was found with low dose of KA treatment (p<0.05). This study concludes that spinal cord damage with some features similar to ALS can be produced by low dose intra-cisternal administration of KA.
  18. Son YL, Ubuka T, Soga T, Yamamoto K, Bentley GE, Tsutsui K
    FASEB J, 2016 06;30(6):2198-210.
    PMID: 26929433 DOI: 10.1096/fj.201500055
    Gonadotropin-inhibitory hormone (GnIH) acts as a negative regulator of reproduction by acting on gonadotropes and gonadotropin-releasing hormone (GnRH) neurons. Despite its functional significance, the molecular mechanism of GnIH action in the target cells has not been fully elucidated. To expand our previous study on GnIH actions in gonadotropes, we investigated the potential signal transduction pathway that conveys the inhibitory action of GnIH in GnRH neurons by using the GnRH neuronal cell line, GT1-7. We examined whether GnIH inhibits the action of kisspeptin and vasoactive intestinal polypeptide (VIP), positive regulators of GnRH neurons. Although GnIH significantly suppressed the stimulatory effect of kisspeptin on GnRH release in hypothalamic culture, GnIH had no inhibitory effect on kisspeptin stimulation of serum response element and nuclear factor of activated T-cell response element activities and ERK phosphorylation, indicating that GnIH may not directly inhibit kisspeptin signaling in GnRH neurons. On the contrary, GnIH effectively eliminated the stimulatory effect of VIP on p38 and ERK phosphorylation, c-Fos mRNA expression, and GnRH release. The use of pharmacological modulators strongly demonstrated the specific inhibitory action of GnIH on the adenylate cyclase/cAMP/protein kinase A pathway, suggesting a common inhibitory mechanism of GnIH action in GnRH neurons and gonadotropes.-Son, Y. L., Ubuka, T., Soga, T., Yamamoto, K., Bentley, G. E., Tsutsui, K. Inhibitory action of gonadotropin-inhibitory hormone on the signaling pathways induced by kisspeptin and vasoactive intestinal polypeptide in GnRH neuronal cell line, GT1-7.
  19. Yong SJ, Yong MH, Teoh SL, Soga T, Parhar I, Chew J, et al.
    Front Cell Neurosci, 2021;15:695738.
    PMID: 34483839 DOI: 10.3389/fncel.2021.695738
    Herpes simplex virus type 1 (HSV-1) as a possible infectious etiology in Alzheimer's disease (AD) has been proposed since the 1980s. The accumulating research thus far continues to support the association and a possible causal role of HSV-1 in the development of AD. HSV-1 has been shown to induce neuropathological and behavioral changes of AD, such as amyloid-beta accumulation, tau hyperphosphorylation, as well as memory and learning impairments in experimental settings. However, a neuroanatomical standpoint of HSV-1 tropism in the brain has not been emphasized in detail. In this review, we propose that the hippocampal vulnerability to HSV-1 infection plays a part in the development of AD and amnestic mild cognitive impairment (aMCI). Henceforth, this review draws on human studies to bridge HSV-1 to hippocampal-related brain disorders, namely AD and aMCI/MCI. Next, experimental models and clinical observations supporting the neurotropism or predilection of HSV-1 to infect the hippocampus are examined. Following this, factors and mechanisms predisposing the hippocampus to HSV-1 infection are discussed. In brief, the hippocampus has high levels of viral cellular receptors, neural stem or progenitor cells (NSCs/NPCs), glucocorticoid receptors (GRs) and amyloid precursor protein (APP) that support HSV-1 infectivity, as well as inadequate antiviral immunity against HSV-1. Currently, the established diseases HSV-1 causes are mucocutaneous lesions and encephalitis; however, this review revises that HSV-1 may also induce and/or contribute to hippocampal-related brain disorders, especially AD and aMCI/MCI.
  20. Lim WL, Idris MM, Kevin FS, Soga T, Parhar IS
    PMID: 27630615 DOI: 10.3389/fendo.2016.00117
    Maternal dexamethasone [(DEX); a glucocorticoid receptor agonist] exposure delays pubertal onset and alters reproductive behavior in the adult offspring. However, little is known whether maternal DEX exposure affects the offspring's reproductive function by disrupting the gonadotropin-releasing hormone (GnRH) neuronal function in the brain. Therefore, this study determined the exposure of maternal DEX on the GnRH neuronal spine development and synaptic cluster inputs to GnRH neurons using transgenic rats expressing enhanced green fluorescent protein (EGFP) under the control of GnRH promoter. Pregnant females were administered with DEX (0.1 mg/kg) or vehicle (VEH, water) daily during gestation day 13-20. Confocal imaging was used to examine the spine density of EGFP-GnRH neurons by three-dimensional rendering and synaptic cluster inputs to EGFP-GnRH neurons by synapsin I immunohistochemistry on postnatal day 0 (P0) males. The spine morphology and number on GnRH neurons did not change between the P0 males following maternal DEX and VEH treatment. The number of synaptic clusters within the organum vasculosum of the lamina terminalis (OVLT) was decreased by maternal DEX exposure in P0 males. Furthermore, the number and levels of synaptic cluster inputs in close apposition with GnRH neurons was decreased following maternal DEX exposure in the OVLT region of P0 males. In addition, the postsynaptic marker molecule, postsynaptic density 95, was observed in GnRH neurons following both DEX and VEH treatment. These results suggest that maternal DEX exposure alters neural afferent inputs to GnRH neurons during early postnatal stage, which could lead to reproductive dysfunction during adulthood.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links