Displaying publications 21 - 40 of 109 in total

Abstract:
Sort:
  1. Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    J Pharm Biomed Anal, 2021 Jan 30;193:113702.
    PMID: 33160220 DOI: 10.1016/j.jpba.2020.113702
    Bioactive compounds from endophytic fungi exhibit diverse biological activities which include anticancer effect. Capitalising on the abundance of unexplored endophytes that reside within marine plants, this study assessed the anticancer potential of ethyl acetate endophytic fungal extracts (i.e. MBFT Tip 2.1, MBL 1.2, MBS 3.2, MKS 3 and MKS 3.1) derived from leaves, stem and fruits of marine plants that grow along Morib Beach, Malaysia. For identification of endophytic fungi, EF 4/ EF 3 and ITS 1/ ITS 4 PCR primer pairs were used to amplify the fungal 18S rDNA sequence and ITS region sequence, respectively. The resultant sequences were subjected to similarity search via the NCBI GenBank database. High-performance thin layer chromatography (HPTLC) hyphenated with bioassays was used to characterise the extracts in terms of their phytochemical profiles and bioactivity. Microchemical derivatisation was used to assess polyphenolic and phytosterol/ terpenoid content whereas biochemical derivatisation was used to establish antioxidant activities and α-amylase enzyme inhibition. The sulforhodamine B (SRB) assay was used to assess the anticancer effect of the extracts against HCT116 (a human colorectal cancer cell line). The present results indicated MBS 3.2 (Penicillium decumbens) as the most potent extract against HCT116 (IC50 = 0.16 μg/mL), approximately 3-times more potent than 5-flurouracil (IC50 = 0.46 μg/mL). Stepwise multiple regression method suggests that the anticancer effect of MBS 3.2 could be associated with high polyphenolic content and antioxidant potential. Nonlinear regression analysis confirmed that low to moderate α-amylase inhibition exhibits maximum anticancer activity. Current findings warrant further in-depth mechanistic studies.
  2. Umirah F, Neoh CF, Ramasamy K, Lim SM
    Diabetes Res Clin Pract, 2021 Mar;173:108689.
    PMID: 33549678 DOI: 10.1016/j.diabres.2021.108689
    AIMS: This systematic review summarised the latest findings on differential composition of gut microbiota in T2DM.

    METHODS: Literature search was performed using electronic databases. Relevant studies were identified, extracted and assessed for risk of bias. The primary outcome of this systematic review was the composition of gut microbiota in healthy controls and T2DM while the secondary outcomes included the correlation of gut microbiota with metabolic parameters.

    RESULTS: Thirteen case-control studies involving 575 T2DM and 840 healthy controls were included. T2DM patients exhibited a marked increase in lactobacilli. Six studies found lactobacilli to predominate the gut of T2DM patients; however, this could be confounded by the types of antihyperglyacemic medications. Conversely, butyrate producers dominate the gut of healthy controls. In T2DM patients, butyrate producers were surprisingly higher in those taking metformin intake than those not taking the drug. Whilst lactobacilli were found to be higher with increased plasma glucose, conflicting correlations were observed between various genera and anthropometric measurements, dietary intake, lipid profiles and inflammatory markers. There were moderate to strong significant positive correlations between the class Clostridia and phylum Firmicutes with pro-inflammatory IFN-γ as well as between Negativicutes and IL-6.

    CONCLUSIONS: Altogether, butyrate-producing bacteria are negatively correlated to glycaemic parameters. Lactobacilli are higher in T2DM patients and Firmicutes is correlated with inflammation.

  3. Ashraf K, Halim H, Lim SM, Ramasamy K, Sultan S
    Saudi J Biol Sci, 2020 Jan;27(1):417-432.
    PMID: 31889866 DOI: 10.1016/j.sjbs.2019.11.003
    Background: Medicinal plants are important source of drugs with pharmacological activities. Therefore, there is always rising demands to discover more therapeutic agents from various species. Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea are high valued medicinal plants of Malaysia contain rich source of phenolic and flavonoid compounds. The aims of the present study were to evaluate anti-oxidant, antimicrobial and anti-proliferative effects on A549, HeGP2 and MCF7 cell lines of four different extracts of Orthosiphon stamineus, Gynura procumbens and Ficus deltoidea.

    Methodology: The leaves of all selected plants were extracted with methanol, chloroform, ethyl acetate and butanol separately with simple cold maceration. Antioxidant activity of all crude extracts were quantitatively measured against DPPH and Ferric Reducing Assay. Antimicrobial evaluation was done by Microdilution and MTT assay and antipoliferative activity of all extracts of selected plant were evaluated against A549, HePG2 and MCF7 cell lines.

    Results: Results showed that methanol extract exhibited highest percentage free radical scavenging activity of almost all extracts of selected plants. Antimicrobials results showed chloroform and methanol extracts of O. stamineus extract were the two most active extracts against resistant MRSA but not S. aureus. Only methanol extract of G. procumbens showed antimicrobial activity against the tested pathogens. Chloroform and methanol extracts of F. deltoidea elicited antimicrobial activity against S. aureus but not MRSA. Antiproliferative activity against three tested cell lines results showed that ethyl acetate extract of O. stamineus showed good effect whereas methanol extract of F. deltoidea and G. procumbens exhibited good antiproliferative activity.

    Conclusions: The results of the present investigation demonstrated significant variations in the antioxidant, antimicrobial and antiproliferative effects of different solvent extracts. These data could be helpful in isolation of pure potent compounds with good biological activities from the extracts of plants.

  4. Samah S, Ramasamy K, Lim SM, Neoh CF
    Diabetes Res Clin Pract, 2016 Jun 18;118:172-182.
    PMID: 27388674 DOI: 10.1016/j.diabres.2016.06.014
    AIMS: To systematically review evidence of probiotic interventions against type 2 diabetes mellitus (T2DM) and analyse the effects of probiotics on glycaemic control among T2DM patients.
    METHODS: Electronic search using five electronic databases was performed until October 2015. Relevant studies were identified, extracted and assessed for risk of bias. The primary outcomes of this review were glycated haemoglobin (HbA1c) and fasting blood glucose (FBG). Fasting plasma insulin, homeostasis model assessment-insulin resistance, C-reactive protein, interleukin-6 and malondialdehyde, were identified as the secondary outcomes. Mean differences (MD) between probiotics and control groups for all outcomes were pooled using either Fixed- or Random-Effect Model. Statistical heterogeneity was assessed using I(2) and Chi(2) tests.
    RESULTS: Six randomised controlled trials (RCTs) were included in the systematic review, whereas only five were included in meta-analysis. Most RCTs were presented with low or unclear risk of bias. When compared to placebo, FBG was significantly lower with probiotic consumption (MD=-0.98mmol/L; 95% CI: -1.17, 0.78, p<0.00001), with moderate but insignificant heterogeneity noted. Insignificant changes between the groups were also noted for HbA1c and other secondary outcomes.
    CONCLUSIONS: A moderate hypoglycaemic effect of probiotics, with a significantly lower FBG was noted. Findings on HbA1c, anti-inflammatory and anti-oxidative effects of probiotics in the clinical setting, however, remain inconsistent. The findings imply the need for well-designed clinical studies to further assess the potential beneficial effects of probiotics in management of T2DM.
    KEYWORDS: Glycaemic; Probiotics; Review; Type 2 diabetes mellitus
  5. Mohd-Zubri NS, Ramasamy K, Abdul-Rahman NZ
    Arch Oral Biol, 2022 Nov;143:105515.
    PMID: 36084351 DOI: 10.1016/j.archoralbio.2022.105515
    OBJECTIVE: This study aims to characterise the lactic acid bacteria (LAB) isolated from local Malaysian fermented foods with oral probiotics properties.

    DESIGN: The LAB strains isolated from Malaysian fermented foods, Lactobacillus brevis FT 6 and Lactobacillus plantarum FT 12, were assessed for their antimicrobial properties against Porphyromonas gingivalis ATCC 33277 via disc diffusion assay. Anti-biofilm properties were determined by treating the overnight P. gingivalis ATCC 33277 biofilm with different concentrations of LAB cell-free supernatant (LAB CFS). Quantification of biofilm was carried out by measuring the optical density of stained biofilm. The ability of L. brevis FT 6 and L. plantarum FT 12 to tolerate salivary amylase was also investigated. Acid production with different sugars was carried out by pH measurement and screening for potential antimicrobial organic acid by disc diffusion assay of neutralised probiotics CFS samples. In this study, L. rhamnosus ATCC 7469, a commercial strain was used to compare the efficacy of the isolated strain with the commercial strain.

    RESULTS: Lactobacillus brevis FT 6 and L. plantarum FT 12 possess antimicrobial activity against P. gingivalis with inhibition diameters of more than 10 mm, and the results were comparable with L. rhamnosus ATCC 7469. The MIC and MBC assay results for all tested strains were recorded to be 25 µl/µl concentration. All LAB CFS reduced biofilm formation proportionally to the CFS concentration and tolerated salivary amylase with more than 50% viability. Overnight cultures of all lactic acid bacteria strains showed a pH reduction and neutralised CFS of all lactic acid bacteria strains did not show any inhibition towards P. gingivalis.

    CONCLUSIONS: These results indicate that the isolated probiotics have the potential as probiotics to be used as a supportive oral health treatment, especially against a periodontal pathogen, P. gingivalis.

  6. Ismail MF, Lim SM, Lim FT, Ramasamy K
    PMID: 37816988 DOI: 10.1007/s12602-023-10171-6
    The susceptibility of probiotics to high temperature and low pH remains a major challenge in food industries. Numerous commercially available probiotic products were reportedly presented with lower probiotic viability than claimed. To confer health benefits to the host, it is essential that probiotic strain remains viable at optimal amount during food processing procedures, storage and passage through the gastrointestinal tract. This study addressed these issues by immobilising Lactiplantibacillus plantarum LAB12 isolated from tempeh (fermented soybean) in a polymeric matrix made up of alginate (Alg, 0.5% w/v) and denatured pea protein isolate (PPi, 1-10% w/v) using the emulsion/acidification technique. Alg supplemented with 10% PPi (Alg-PPi10) appeared to be optimally small ( 9 log CFU g-1) in simulated intestinal fluid (at pH 6.8 for 240 min). Whilst retaining their intrinsic cholesterol lowering effect, microencapsulation conferred additional advantages to L. plantarum LAB12 in terms of lowering serum triglyceride and increasing HDL cholesterol in zebrafish fed with high-cholesterol diet (HCD). Overall, our findings strongly imply the potential use of Alg-PPi10 as an effective medium that confers thermal protection and facilitates pH-sensitive release of cholesterol-reducing L. plantarum LAB12. This will allow the diverse applications L. plantarum LAB12 across health, food and agro-feed industries amongst others.
  7. Rohawi NS, Ramasamy K, Agatonovic-Kustrin S, Lim SM
    PMID: 29894935 DOI: 10.1016/j.jchromb.2018.06.009
    A quantitative assay using high-performance thin-layer chromatography (HPTLC) was developed to investigate bile salt hydrolase (BSH) activity in Pediococcus pentosaceus LAB6 and Lactobacillus plantarum LAB12 probiotic bacteria isolated from Malaysian fermented food. Lactic acid bacteria (LAB) were cultured in de Man Rogosa and Sharpe (MRS) broth containing 1 mmol/L of sodium-based glyco- and tauro-conjugated bile salts for 24 h. The cultures were centrifuged and the resultant cell free supernatant was subjected to chromatographic separation on a HPTLC plate. Conjugated bile salts were quantified by densitometric scans at 550 nm and results were compared to digital image analysis of chromatographic plates after derivatisation with anisaldehyde/sulfuric acid. Standard curves for bile salts determination with both methods show good linearity with high coefficient of determination (R2) between 0.97 and 0.99. Method validation indicates good sensitivity with low relative standard deviation (RSD) (<10%), low limits of detection (LOD) of 0.4 versus 0.2 μg and limit of quantification (LOQ) of 1.4 versus 0.7 μg, for densitometric vs digital image analysis method, respectively. The bile salt hydrolase activity was found to be higher against glyco- than tauro-conjugated bile salts (LAB6; 100% vs >38%: LAB12; 100% vs >75%). The present findings strongly show that quantitative analysis via digitally-enhanced HPTLC offers a rapid quantitative analysis for deconjugation of bile salts by probiotics.
  8. Ahmad Alwi NA, Lim SM, Mani V, Ramasamy K
    J Diet Suppl, 2023;20(5):717-734.
    PMID: 35876040 DOI: 10.1080/19390211.2022.2103608
    This study explored mechanisms underpinning enhanced memory in amyloid precursor protein (APP) transgenic mice (male; 10-12 months; n = 6/group) supplemented with Lactobacillus plantarum LAB12 (LAB12)/Lactobacillus casei Shirota (LcS). Morris Water Maze test was performed before brains were harvested for gene expression and biochemical studies. LAB-supplemented mice exhibited reduced escape latency and distance but significant increased time spent in platform zone. This was associated with downregulated beta-site APP cleaving enzyme-1 (BACE1) mRNA and significant reduced nitric oxide in brains. LAB12 also significantly increased glutathione. The LAB-enhanced memory is strain-dependent and could be mediated, in part, through amyloidogenic pathway and anti-oxidant/oxidative stress interplay.
  9. Gopinathan S, Kaur AH, Ramasamy K, Raman M
    F1000Res, 2021;10:927.
    PMID: 35035891 DOI: 10.12688/f1000research.72860.3
    The pandemic has created challenges in all sectors of the economy and education. Traditional teaching approaches seem futile in the new context, thus the need to constantly reinvent the delivery to meet the fast-paced changes in the education domain. Hence, Design Thinking (DT) is an alternative approach that might be useful in the given context. DT is known to be a human-centric approach to innovative problem-solving processes. DT could be employed in the delivery process to develop twenty-first-century skills and enhance creativity and innovation, in an attempt to identify alternative solutions. The study explores the role of design thinking (DT) in the form of empathy, thinking process, gamified lessons and curriculum enhancement, which leads to innovative delivery among teachers. It enhances and facilitates innovative content delivery by leveraging creativity. The study targeted 131 teachers, whereby 61 are primary school teachers and 70 are secondary school teachers. A questionnaire constituting of 23 close-ended questions using the 5-point Likert scale was used to collect data. Data was analyzed using SmartPLS to establish relationships between DT and Innovative Delivery in schools. The data was further analyzed to seek co-relations between the DT steps and the successful transformation of content delivery by teachers. The study established a framework for the application of design thinking for teachers as the primary support in developing activities for their students. It shows that thinking process, gamifying lessons and curriculum enhancement have positive significance in innovative delivery, whereas empathy did not show a significant positive relationship. The outcome of this study will help fill the gap towards creating an interesting method of delivery in schools and constantly innovating the method to suit the evolving generation. This insight is crucial for the Ministry of Education and policymakers to enhance teachers' ability to innovatively deliver content to students.
  10. Ramasamy K, Khamalrudin N, Teo DSHM, Hashim ND
    Cureus, 2024 Jul;16(7):e64763.
    PMID: 39156370 DOI: 10.7759/cureus.64763
    Preauricular sinuses are congenital anomalies arising from the incomplete fusion of hillocks of His of the first and second branchial arches. Surgery is warranted when there is recurrent infection or abscess formation. However, the presence of scarring and skin thinning could result in large tissue defects after complete excision. In such cases, meticulous preoperative planning with regard to the reconstruction technique is imperative. We describe the clinical presentation, surgical technique, and postoperative outcomes of such a case in a young toddler, with a focus on the rationale behind the chosen management strategy. By sharing our experience, we aim to contribute to the existing literature on the management of complicated preauricular sinuses and provide insights that may guide clinicians facing similar challenges.
  11. Rohilla P, Deep A, Kamra M, Narasimhan B, Ramasamy K, Mani V, et al.
    Drug Res (Stuttg), 2014 Oct;64(10):505-9.
    PMID: 24992500 DOI: 10.1055/s-0034-1368720
    A series of N'-(substituted benzylidene)-2-(benzo[d]oxazol-3(2H)-yl)acetohydrazide derivatives was synthesized and evaluated for its in vitro antimicrobial and anticancer activities. Antimicrobial activity results revealed that compound 12 was found to be the most potent antimicrobial agent. Results of anticancer study indicated that the synthesized compounds exhibited average anticancer potential. Compound 7 (IC 50 =3.12 µM) and compound 16 (IC 50 =2.88 µM) were found to be most potent against breast cancer (MCF7) cell lines. In conclusion, compound 12 and 16 have the potential to be selected as lead compound for the developing of novel antimicrobial and anticancer agents respectively.
  12. Mishra RK, Ramasamy K, Lim SM, Ismail MF, Majeed AB
    J Mater Sci Mater Med, 2014 Aug;25(8):1925-39.
    PMID: 24831081 DOI: 10.1007/s10856-014-5228-y
    The present study investigates the development of methyl cellulose (MC)-sodium alginate (SA)-montmorillonite (MMT) clay based bionanocomposite films with interesting wound healing properties. The differential scanning calorimetry analysis of the composite films revealed presence of single glass transition temperature (Tg) confirming the miscible nature of the ternary blended films. The increase in MMT ratio in the composite films reduced the mobility of biopolymer chains (MC/SA) which increased the Tg of the film. Thermogravimetric analysis showed that dispersion of clay (MMT) at nano level significantly delayed the weight loss that correlated with higher thermal stability of the composite films. It was observed that the developed films were able to exhibit antimicrobial activity against four typical pathogenic bacteria found in the presence of wound. The developed films were able to significantly inhibit (10 mg/ml) the growth of Enterococcus faecium and Pseudomonas aeruginosa. In vitro scratch assay indicated potential wound closure activities of MC-2-4 bionanocomposite films at their respective highest subtoxic doses. In conclusion, these ternary bionanocomposite films were found to be promising systems for wound healing applications.
  13. Hazalin NA, Lim SM, Cole AL, Majeed AB, Ramasamy K
    Anticancer Drugs, 2013 Sep;24(8):852-61.
    PMID: 23764760 DOI: 10.1097/CAD.0b013e3283635a47
    There is growing interest in the discovery of bioactive metabolites from endophytes as an alternative source of therapeutics. Identification of their therapeutic targets is essential in understanding the underlying mechanisms and enhancing the resultant therapeutic effects. As such, bioactive compounds produced by endophytic fungi from plants at the National Park, Pahang, Malaysia, were investigated. Five known compounds were identified using LC-UV-MS-NMR and they include trichodermol, 7-epi-brefeldin A, (3R,4S)-4-hydroxymellein, desmethyl-lasiodiplodin and cytochalasin D. The present study went on to investigate the potential anticancer effects of these compounds and the corresponding molecular mechanisms of the lead compound against human breast adenocarcinoma, MCF-7. For the preliminary screening, the cytotoxicity and apoptotic effects of these compounds against MCF-7 were examined. The compounds were also tested against noncarcinogenic hepatocytes (WRL68). The differential cytotoxicity was then determined using the MTT assay. Desmethyl-lasiodiplodin was found to suppress the growth of MCF-7, yielding an inhibitory concentration (IC50) that was seven-fold lower than that of the normal cells. The cytotoxic effect of desmethyl-lasiodiplodin was accompanied by apoptosis. Subsequent analysis demonstrated increased expression levels of caspase 3, c-myc and p53. Further, desmethyl-lasiodiplodin resulted in inhibition of monocyte chemotactic protein (MCP)-3, a cytokine involved in cell survival and metastasis. Hence, this study proposed that desmethyl-lasiodiplodin inhibited growth and survival of MCF-7 through the induction of apoptosis. This anticancer effect is mediated, in part, by upregulation of apoptotic genes and downregulation of MCP-3. As desmethyl-lasiodiplodin elicited minimal impact against normal hepatocytes, our findings also imply its potential use as a specific apoptotic agent in breast cancer treatment.
  14. Hazalin NA, Ramasamy K, Lim SM, Cole AL, Majeed AB
    Phytomedicine, 2012 May 15;19(7):609-17.
    PMID: 22397996 DOI: 10.1016/j.phymed.2012.01.007
    Endophytic fungi have been shown to be a promising source of biologically active natural products. In the present study, extracts of four endophytic fungi isolated from plants of the National Park, Pahang were evaluated for their cytotoxic activity and the nature of their active compounds determined. Those extracts exhibiting activity with IC(50) values less than 17 μg/ml against HCT116, MCF-7 and K562 cell lines were shown to induce apoptosis in these cell lines. Molecular analysis, based on sequences of the rDNA internal transcribed spacers ITS1 and ITS4, revealed all four endophytic fungi to be ascomycetes: three sordariomycetes and a dothideomycete. Six known compounds, cytochalasin J, dechlorogriseofulvin, demethylharzianic-acid, griseofulvin, harzianic acid and 2-hexylidene-3-methyl-succinic acid were identified from a rapid dereplication technique for fungal metabolites using an in-house UV library. The results from the present study suggest the potential of endophytic fungi as cytotoxic agents, and there is an indication that the isolates contain bioactive compounds that mainly kill cancer cells by apoptosis.
  15. Hazalin NA, Ramasamy K, Lim SM, Wahab IA, Cole AL, Abdul Majeed AB
    PMID: 19930582 DOI: 10.1186/1472-6882-9-46
    Endophytes, microorganisms which reside in plant tissues, have potential in producing novel metabolites for exploitation in medicine. Cytotoxic and antibacterial activities of a total of 300 endophytic fungi were investigated.
  16. Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MI
    J Ethnopharmacol, 2013 Mar 7;146(1):198-204.
    PMID: 23276785 DOI: 10.1016/j.jep.2012.12.032
    Muntingia calabura (Elaeocarpaceae) is one of the most common roadside trees in Malaysia. Its leaves, barks, flowers and roots have been used as a folk remedy for the treatment of fever, incipient cold, liver disease, as well as an antiseptic agent in Southeast Asia. The aim of this study is to isolate and identify the antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L.
  17. Sejari N, Kamaruddin K, Ramasamy K, Lim SM, Neoh CF, Ming LC
    BMC Complement Altern Med, 2016 Jan 15;16:16.
    PMID: 26767971 DOI: 10.1186/s12906-016-0988-1
    BACKGROUND: The treatment of low back pain is very challenging due to the recurrent nature of the problem. It is believed that traditional Malay massage helps to relieve such back pain but there is a lack of scientific evidence to support both the practice of traditional Malay massage and the mechanism by which it exerts its effect. The aim of this study is to investigate the immediate effect of traditional Malay massage on the pain scale, substance P, inflammatory mediators, and functional outcomes among low back pain patients.

    METHODS: A non-blinded, randomised controlled trial will be conducted. A total of sixty-six patients who fulfil the inclusion criteria will be recruited. The participants will be randomly allocated into intervention (traditional Malay massage) and control (relaxation position) groups. Blood and saliva samples will be collected before and immediately after intervention. All collected samples will be analysed. The primary outcomes are the changes in the level of substance P in both saliva and blood samples between both groups. The secondary outcomes include the levels of inflammatory mediators [i.e. TNF-α, IL-1β, IL-8, monocyte chemotactic protein-1, IL-6 and IL-10, and the soluble form of the intercellular adhesion molecule], the pain intensity as measured by a visual analogous scale and functional outcomes using the Roland-Morris Disability Questionnaire.

    DISCUSSION: Massage is a type of physical therapy that has been proven to be potentially capable of reducing unpleasant pain sensations by a complex sensory response and chemical mediators such as substance P and various inflammatory mediators. Previous studies conducted using Thai, Swedish, or other forms of massage therapies, have showed inconsistent findings on substance P levels pre and post the interventions. Each massage genre varies in terms of massage and joint mobilization points, as well as the lumbar spinous process. Traditional Malay massage, known locally as "Urut Melayu", involves soft-tissue manipulation of the whole body applied using the hands and fingers. This massage technique combines both deep muscular tissue massage and spiritual rituals. This trial is expected to give rise to new knowledge underlying the mechanisms for pain and inflammation relief that are activated by traditional Malay massage.

    TRIAL REGISTRATION: Australian New Zealand Clinical Trials ACTRN12615000537550 .

  18. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
  19. Tahlan S, Ramasamy K, Lim SM, Shah SAA, Mani V, Narasimhan B
    Chem Cent J, 2018 Dec 19;12(1):139.
    PMID: 30569392 DOI: 10.1186/s13065-018-0513-3
    BACKGROUND: The emergence of bacterial resistance is a major public health problem. It is essential to develop and synthesize new therapeutic agents with better activity. The mode of actions of certain newly developed antimicrobial agents, however, exhibited very limited effect in treating life threatening systemic infections. Therefore, the advancement of multi-potent and efficient antimicrobial agents is crucial to overcome the increased multi-drug resistance of bacteria and fungi. Cancer, which remains as one of the primary causes of deaths and is commonly treated by chemotherapeutic agents, is also in need of novel and efficacious agents to treat resistant cases. As such, a sequence of novel substituted benzamides was designed, synthesized and evaluated for their antimicrobial and anticancer activities.

    METHODOLOGY: All synthesized compounds were characterized by IR, NMR, Mass and elemental analysis followed by in vitro antimicrobial studies against Gram-positive (Staphylococcus aureus), Gram-negative (Salmonella typhi and Klebsiella pneumoniae) bacterial and fungal (Candida albicans and Aspergillus niger) strains by the tube dilution method. The in vitro anticancer evaluation was carried out against the human colorectal carcinoma cell line (HCT116), using the Sulforhodamine B assay.

    RESULTS, DISCUSSION AND CONCLUSION: Compound W6 (MICsa, st, kp = 5.19 µM) emerged as a significant antibacterial agent against all tested bacterial strains i.e. Gram-positive (S. aureus), Gram-negative (S. typhi, K. pneumoniae) while compound W1 (MICca, an = 5.08 µM) was most potent against fungal strains (A. niger and C. albicans) and comparable to fluconazole (MIC = 8.16 µM). The anticancer screening demonstrated that compound W17 (IC50 = 4.12 µM) was most potent amongst the synthesized  compounds and also more potent than the standard drug 5-FU (IC50 = 7.69 µM).

  20. Vashist N, Sambi SS, Narasimhan B, Kumar S, Lim SM, Shah SAA, et al.
    Chem Cent J, 2018 Dec 01;12(1):125.
    PMID: 30506405 DOI: 10.1186/s13065-018-0498-y
    BACKGROUND: A series of benzimidazole derivatives was developed and its chemical scaffolds were authenticated by NMR, IR, elemental analyses and physicochemical properties. The synthesized compounds were screened for their antimicrobial and antiproliferative activities.

    RESULTS AND DISCUSSION: The synthesized benzimidazole compounds were evaluated for their antimicrobial activity using the tube dilution method and were found to exhibit good antimicrobial potential against selected Gram negative and positive bacterial and fungal species. The compounds were also assessed for their anticancer activity exhibited using the SRB assay and were found to elicit antiproliferative activity against MCF7 breast cancer cell line, which was comparable to the standard drug.

    CONCLUSION: Antimicrobial screening results indicated that compounds 1, 2 and 19 to be promising antimicrobial agents against selected microbial species and comparable to standard drugs which included norfloxacin and fluconazole. The anticancer screening results revealed that compounds, 12, 21, 22 and 29 to show the highest activity against MCF7 and their IC50 values were more potent than 5-fluorouracil.

Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links