METHODS: The bacterial strains studied were examined with Etest strips to determine their minimum inhibitory concentrations (MICs) toward amikacin, ciprofloxacin, clarithromycin, imipenem, and linezolid.
RESULTS: Among 51 M. abscessus isolates examined by the Etest, the overall MICs of ciprofloxacin, imipenem, amikacin, clarithromycin, and linezolid showed resistance rates of 33.3%, 31.4%, 2.0%, 5.9%, and 21.6%, to the five antibiotics, respectively. M. abscessus subspecies abscessus was more resistant than M. abscessus subsp. massilience to ciprofloxacin, imipenem, and linezolid but was more susceptible to clarithromycin and amikacin. M. fortuitum isolates were significantly less resistant than M. abscessus to ciprofloxacin (3.6%) and imipenem (7.1%) but more resistant to clarithromycin (42.9%) and linezolid (39.3%).
CONCLUSION: A suitable combination therapy for Malaysian patients would be amikacin plus clarithromycin and ciprofloxacin, to cover infections by all three M. abscessus subspecies and M. fortuitum.
METHODS: A case-control study was done on 42 keratoconus cases, 127 family member controls, and 96 normal controls.
RESULTS: Three gene variants, p.A182A, p.P237P, and p.R217H showed significant associations with keratoconus (P < 0.05). While p.A182A and p.P227P were more prevalent than in the family and normal controls (OR 3.14-4.05), the reverse was observed with p.R217H (OR 0.086-1.59). With Haploview analysis, p.A182A and p.P237P were shown to be in linkage disequilibrium (LD) (LOD (logarithm of the odds score) score of 2.0, r2 of 0.957, and 95% confidence interval (CI) of 0.96-1.00).
CONCLUSION: The study results suggest that the p.A182A and p.P237P variants could have contributed to the development of keratoconus in some Malaysians and that these two variants are likely to be co-inherited. In contrast, the p.R217H variant appeared to confer some protection against the development of keratoconus.
MATERIALS AND METHODS: Single species C. albicans biofilms and mixed species biofilms containing C. albicans and S. mutans at 1:3 and 1:10 ratios were constructed in 6-well microtiter plates. After 24 hours of incubation, the density of resuspended biofilm cells was determined as CFU/ml and used to compare the growth of C. albicans in single species and mixed species biofilms.
RESULTS: The CFU/ml of C. albicans in mixed-species biofilms was found to be higher than that in single-species biofilms.
CONCLUSION: S. mutans promotes the growth of C. albicans in a co-inhabited biofilm.