Displaying publications 21 - 40 of 53 in total

Abstract:
Sort:
  1. Li Y, Ren J, Li N, Liu J, Tan SC, Low TY, et al.
    Exp Gerontol, 2020 11;141:111110.
    PMID: 33045358 DOI: 10.1016/j.exger.2020.111110
    BACKGROUND: Dehydroepiandrosterone (DHEA) has been aggressively sold as a dietary supplement to boost testosterone levels although the impact of DHEA supplementation on testosterone levels has not been fully established. Therefore, we performed a systematic review and meta-analysis of RCTs to investigate the effect of oral DHEA supplementation on testosterone levels.

    METHODS: A systematic literature search was performed in Scopus, Embase, Web of Science, and PubMed databases up to February 2020 for RCTs that investigated the effect of DHEA supplementation on testosterone levels. The estimated effect of the data was calculated using the weighted mean difference (WMD). Subgroup analysis was performed to identify the source of heterogeneity among studies.

    RESULTS: Overall results from 42 publications (comprising 55 arms) demonstrated that testosterone level was significantly increased after DHEA administration (WMD: 28.02 ng/dl, 95% CI: 21.44-34.60, p = 0.00). Subgroup analyses revealed that DHEA increased testosterone level in all subgroups, but the magnitude of increment was higher in females compared to men (WMD: 30.98 ng/dl vs. 21.36 ng/dl); DHEA dosage of ˃50 mg/d compared to ≤50 mg/d (WMD: 57.96 ng/dl vs. 19.43 ng/dl); intervention duration of ≤12 weeks compared to ˃12 weeks (WMD: 44.64 ng/dl vs. 19 ng/dl); healthy participants compared to postmenopausal women, pregnant women, non-healthy participants and androgen-deficient patients (WMD: 52.17 ng/dl vs. 25.04 ng/dl, 16.44 ng/dl and 16.47 ng/dl); and participants below 60 years old compared to above 60 years old (WMD: 31.42 ng/dl vs. 23.93 ng/dl).

    CONCLUSION: DHEA supplementation is effective for increasing testosterone levels, although the magnitude varies among different subgroups. More study needed on pregnant women and miscarriage.

  2. Wang Y, Li J, Fu X, Li J, Liu L, Alkohlani A, et al.
    Cancer Epidemiol, 2021 08;73:101958.
    PMID: 34020315 DOI: 10.1016/j.canep.2021.101958
    PURPOSE: Leptin and adiponectin are adipokines which have been commonly implicated in carcinogenesis. As such, many studies have investigated the association of circulating leptin and adiponectin levels with colorectal cancer (CRC) risk. However, the results remained inconsistent.

    METHODS: In this work, we performed a systematic review and meta-analysis to precisely examine the association between circulating levels of leptin and adiponectin and CRC risk. A systematic literature search was performed in PubMed/MEDLINE, Scopus, Web of Science, and EMBASE databases from inception until October 2020. The pooled effect size was then estimated by calculating the odds ratio (OR).

    RESULTS: A total of 23 records (comprising 26 studies) were included in the meta-analysis. The overall analysis found that circulating levels of leptin and adiponectin were not significantly associated with CRC risk (P > 0.05). Interestingly, subgroup analysis revealed that a higher level of adiponectin was significantly associated with an increased CRC risk among overweight individuals (OR = 1.16; 95 % CI: 1.02, 1.32), and a decreased CRC risk among normal weight individuals (OR = 0.76; 95 % CI: 0.62, 0.92). Besides, a higher level of adiponectin was also significantly associated with a decreased risk of CRC in men (OR = 0.76; 95 % CI: 0.59, 0.98).

    CONCLUSIONS: In conclusion, circulating leptin level was not associated with CRC risk, but that of adiponectin was associated with CRC risk only in specific subgroups.

  3. Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M
    Mass Spectrom Rev, 2021 07;40(4):309-333.
    PMID: 32491218 DOI: 10.1002/mas.21636
    Phosphorylation is a form of protein posttranslational modification (PTM) that regulates many biological processes. Whereas phosphoproteomics is a scientific discipline that identifies and quantifies the phosphorylated proteome using mass spectrometry (MS). This task is extremely challenging as ~30% of the human proteome is phosphorylated; and each phosphoprotein may exist as multiple phospho-isoforms that are present in low abundance and stoichiometry. Hence, phosphopeptide enrichment techniques are indispensable to (phospho)proteomics laboratories. These enrichment methods encompass widely-adopted techniques such as (i) affinity-based chromatography; (ii) ion exchange and mixed-mode chromatography (iii) enrichment with phospho-specific antibodies and protein domains, and (iv) functionalized polymers and other less common but emerging technologies such as hydroxyapatite chromatography and precipitation with inorganic ions. Here, we review these techniques, their history, continuous development and evaluation. Besides, we outline associating challenges of phosphoproteomics that are linked to experimental design, sample preparation, and proteolytic digestion. In addition, we also discuss about the future outlooks in phosphoproteomics, focusing on elucidating the noncanonical phosphoproteome and deciphering the "dark phosphoproteome". © 2020 John Wiley & Sons Ltd.
  4. Wan J, Yuan J, Li X, Bao Y, Hou Y, Li Z, et al.
    Complement Ther Med, 2020 Nov;54:102579.
    PMID: 33183675 DOI: 10.1016/j.ctim.2020.102579
    OBJECTIVE: Although many studies have attempted to unravel the relationship between vitamin D deficiency and the incidence of VTE, the results remained inconsistent. To address this discrepancy, we performed a systematic review and meta-analysis to precisely disentangle the relationship between serum vitamin D levels and VTE risk.

    METHODS: The Web of Science, Scopus, PubMed/Medline, Embase, and Google Scholar databases were searched for all available observational studies that reported the risk of venous thromboembolism (VTE) based on serum vitamin D levels categories. The search was performed up to March 2020.

    RESULTS: Seven studies were included. The overall analysis showed a significantly increased risk of VTE in subjects with low levels of serum vitamin D compared with those with normal vitamin D levels (RR = 1.34; 95% CI: 1.07-1.69; P = 0.011). In a sensitivity analysis, we did not observe a significant effect of any individual study on the combined effect sizes. Nevertheless, significant heterogeneity was present among the studies (Cochrane Q test, p = 0.018, I2 = 61%). In the stratified analysis, low vitamin D levels were positively associated with an increased risk of VTE in prospective population-based studies (RR = 1.31; 95% CI: 1.06-1.61; P = 0.010) and in subjects below 60 years old (RR = 1.28; 95% CI: 1.07-1.54; P = 0.060).

    CONCLUSION: our systematic review and meta-analysis showed that a low serum vitamin D level was indeed associated with an increased risk of VTE.

  5. Syafruddin SE, Mohtar MA, Wan Mohamad Nazarie WF, Low TY
    Biomolecules, 2020 09 28;10(10).
    PMID: 32998281 DOI: 10.3390/biom10101378
    The Krüppel-like factors (KLFs) family of proteins control several key biological processes that include proliferation, differentiation, metabolism, apoptosis and inflammation. Dysregulation of KLF functions have been shown to disrupt cellular homeostasis and contribute to disease development. KLF6 is a relevant example; a range of functional and expression assays suggested that the dysregulation of KLF6 contributes to the onset of cancer, inflammation-associated diseases as well as cardiovascular diseases. KLF6 expression is either suppressed or elevated depending on the disease, and this is largely due to alternative splicing events producing KLF6 isoforms with specialised functions. Hence, the aim of this review is to discuss the known aspects of KLF6 biology that covers the gene and protein architecture, gene regulation, post-translational modifications and functions of KLF6 in health and diseases. We put special emphasis on the equivocal roles of its full-length and spliced variants. We also deliberate on the therapeutic strategies of KLF6 and its associated signalling pathways. Finally, we provide compelling basic and clinical questions to enhance the knowledge and research on elucidating the roles of KLF6 in physiological and pathophysiological processes.
  6. Xia W, Tang N, Kord-Varkaneh H, Low TY, Tan SC, Wu X, et al.
    Pharmacol Res, 2020 11;161:105113.
    PMID: 32755613 DOI: 10.1016/j.phrs.2020.105113
    BACKGROUND AND AIM: Previous studies lack consistent conclusions as to whether astaxanthin is actually linked to various health benefits as claimed. Here, we attempt to unravel the association of astaxanthin consumption with selected health benefits by performing a systematic review and meta-analysis.

    METHODS: Online literature search databases including Scopus, Web of Science, PubMed/Medline, Embase and Google Scholar were searched to discover relevant articles available up to 17 March 2020. We used mean changes and SD of the outcomes to assess treatment response from baseline and mean difference, and 95 % CI were calculated to combined data and assessment effect sizes in astaxanthin and control groups.

    RESULTS: 14 eligible articles were included in the final quantitative analysis. Current study revealed that astaxanthin consumption was not associated with FBS, HbA1c, TC, LDL-C, TG, BMI, BW, DBP, and SBP. We did observe an overall increase in HDL-C (WMD: 1.473 mg/dl, 95 % CI: 0.319-2.627, p = 0.012). As for the levels of CRP, only when astaxanthin was administered (i) for relatively long periods (≥ 12 weeks) (WMD: -0.528 mg/l, 95 % CI: -0.990 to -0.066), and (ii) at high dose (> 12 mg/day) (WMD: -0.389 mg/dl, 95 % CI: -0.596 to -0.183), the levels of CRP would decrease.

    CONCLUSION: In summary, our systematic review and meta-analysis revealed that astaxanthin consumption was associated with increase in HDL-C and decrease in CRP. Significant associations were not observed for other outcomes.

  7. Osman J, Tan SC, Lee PY, Low TY, Jamal R
    J Biomed Sci, 2019 May 22;26(1):39.
    PMID: 31118017 DOI: 10.1186/s12929-019-0535-8
    Sudden cardiac death (SCD) is a sudden, unexpected death that is caused by the loss of heart function. While SCD affects many patients suffering from coronary artery diseases (CAD) and heart failure (HF), a considerable number of SCD events occur in asymptomatic individuals. Certain risk factors for SCD have been identified and incorporated in different clinical scores, however, risk stratification using such algorithms is only useful for health management rather than for early detection and prediction of future SCD events in high-risk individuals. In this review, we discuss different molecular biomarkers that are used for early detection of SCD. This includes genetic biomarkers, where the majority of them are genomic variants for genes that encode for ion channels. Meanwhile, protein biomarkers often denote proteins that play roles in pathophysiological processes that lead to CAD and HF, notably (i) atherosclerosis that involves oxidative stress and inflammation, as well as (ii) cardiac tissue damage that involves neurohormonal and hemodynamic regulation and myocardial stress. Finally, we outline existing challenges and future directions including the use of OMICS strategy for biomarker discovery and the multimarker panels.
  8. Liu H, Gu H, Kutbi EH, Tan SC, Low TY, Zhang C
    Int J Clin Pract, 2021 Nov;75(11):e14764.
    PMID: 34469629 DOI: 10.1111/ijcp.14764
    PURPOSE: Many studies have investigated the association between serum IGF-1 and IGFBP levels with gastric cancer (GC), but the results remained inconclusive. In this work, we performed a systematic review and meta-analysis to examine the precise association of serum levels of IGF-1 and IGFBP with GC.

    METHODS: A comprehensive systematic search was carried out in PubMed/MEDLINE, SCOPUS, Web of Science, and EMBASE databases for (nested) case-control studies that reported the levels of IGF-1 and IGFBP in GC cases and healthy controls, from inception until October 2020. Weighted mean difference (WMD) was calculated for estimating combined effect size. Subgroup analysis was performed to identify the source of heterogeneity among studies.

    RESULTS: We found eight and five eligible studies (with 1541 participants) which provided data for IGF-1 and IGFBP, respectively. All studies on IGFBP reported the IGFBP-3 isoform. The pooled results indicate that GC patients had significantly lower serum IGF-1 [WMD = -26.21 ng/mL (95% CI, -45.58 to -6.85; P = .008)] and IGFBP-3 [WMD = -0.41 ng/mL (95% CI, -0.80 to -0.01; P = .04; I2  = 89.9%; P 

  9. Lee PY, Yeoh Y, Omar N, Pung YF, Lim LC, Low TY
    Crit Rev Clin Lab Sci, 2021 11;58(7):513-529.
    PMID: 34615421 DOI: 10.1080/10408363.2021.1942781
    Matrix-assisted laser desorption/ionization (MALDI) imaging is an emergent technology that has been increasingly adopted in cancer research. MALDI imaging is capable of providing global molecular mapping of the abundance and spatial information of biomolecules directly in the tissues without labeling. It enables the characterization of a wide spectrum of analytes, including proteins, peptides, glycans, lipids, drugs, and metabolites and is well suited for both discovery and targeted analysis. An advantage of MALDI imaging is that it maintains tissue integrity, which allows correlation with histological features. It has proven to be a valuable tool for probing tumor heterogeneity and has been increasingly applied to interrogate molecular events associated with cancer. It provides unique insights into both the molecular content and spatial details that are not accessible by other techniques, and it has allowed considerable progress in the field of cancer research. In this review, we first provide an overview of the MALDI imaging workflow and approach. We then highlight some useful applications in various niches of cancer research, followed by a discussion of the challenges, recent developments and future prospect of this technique in the field.
  10. Ang MY, Low TY, Lee PY, Wan Mohamad Nazarie WF, Guryev V, Jamal R
    Clin Chim Acta, 2019 Nov;498:38-46.
    PMID: 31421119 DOI: 10.1016/j.cca.2019.08.010
    One of the best-established area within multi-omics is proteogenomics, whereby the underpinning technologies are next-generation sequencing (NGS) and mass spectrometry (MS). Proteogenomics has contributed significantly to genome (re)-annotation, whereby novel coding sequences (CDS) are identified and confirmed. By incorporating in-silico translated genome variants in protein database, single amino acid variants (SAAV) and splice proteoforms can be identified and quantified at peptide level. The application of proteogenomics in cancer research potentially enables the identification of patient-specific proteoforms, as well as the association of the efficacy or resistance of cancer therapy to different mutations. Here, we discuss how NGS/TGS data are analyzed and incorporated into the proteogenomic framework. These sequence data mainly originate from whole genome sequencing (WGS), whole exome sequencing (WES) and RNA-Seq. We explain two major strategies for sequence analysis i.e., de novo assembly and reads mapping, followed by construction of customized protein databases using such data. Besides, we also elaborate on the procedures of spectrum to peptide sequence matching in proteogenomics, and the relationship between database size on the false discovery rate (FDR). Finally, we discuss the latest development in proteogenomics-assisted precision oncology and also challenges and opportunities in proteogenomics research.
  11. Tan SC, Low TY, Mohamad Hanif EA, Sharzehan MAK, Kord-Varkaneh H, Islam MA
    Sci Rep, 2021 Sep 20;11(1):18619.
    PMID: 34545128 DOI: 10.1038/s41598-021-97935-8
    The ESR1 rs9340799 polymorphism has been frequently investigated with regard to its association with breast cancer (BC) susceptibility, but the findings have been inconclusive. In this work, we aimed to address the inconsistencies in study findings by performing a systematic review and meta-analysis. Eligible studies were identified from the Web of Science, PubMed, Scopus, China National Knowledge Infrastructure, VIP and Wanfang databases based on the predefined inclusion and exclusion criteria. The pooled odds ratio (OR) was then calculated under five genetic models: homozygous (GG vs. AA), heterozygous (AG vs. AA), dominant (AG + GG vs. AA), recessive (GG vs. AA + AG) and allele (G vs. A). Combined results from 23 studies involving 34,721 subjects indicated a lack of significant association between the polymorphism and BC susceptibility (homozygous model, OR = 1.045, 95% CI 0.887-1.231, P = 0.601; heterozygous model, OR = 0.941, 95% CI 0.861-1.030, P = 0.186; dominant model, OR = 0.957, 95% CI 0.875-1.045, P = 0.327; recessive model, OR = 1.053, 95% CI 0.908-1.222, P = 0.495; allele model, OR = 0.987, 95% CI 0.919-1.059, P = 0.709). Subgroup analyses by ethnicity, menopausal status and study quality also revealed no statistically significant association (P > 0.05). In conclusion, our results showed that the ESR1 rs9340799 polymorphism was not associated with BC susceptibility, suggesting its limited potential as a genetic marker for BC.
  12. Hatta MNA, Mohamad Hanif EA, Chin SF, Low TY, Neoh HM
    Biosci Rep, 2023 Jun 28;43(6).
    PMID: 37218575 DOI: 10.1042/BSR20230609
    The gut microbiota Parvimonas micra has been found to be enriched in gut mucosal tissues and fecal samples of colorectal cancer (CRC) patients compared with non-CRC controls. In the present study, we investigated the tumorigenic potential of P. micra and its regulatory pathways in CRC using HT-29, a low-grade CRC intestinal epithelial cell. For every P. micra-HT-29 interaction assay, HT-29 was co-cultured anaerobically with P. micra at an MOI of 100:1 (bacteria: cells) for 2 h. We found that P. micra increased HT-29 cell proliferation by 38.45% (P=0.008), with the highest wound healing rate at 24 h post-infection (P=0.02). In addition, inflammatory marker expression (IL-5, IL-8, CCL20, and CSF2) was also significantly induced. Shotgun proteomics profiling analysis revealed that P. micra affects the protein expression of HT-29 (157 up-regulated and 214 down-regulated proteins). Up-regulation of PSMB4 protein and its neighbouring subunits revealed association of the ubiquitin-proteasome pathway (UPP) in CRC carcinogenesis; whereas down-regulation of CUL1, YWHAH, and MCM3 signified cell cycle dysregulation. Moreover, 22 clinically relevant epithelial-mesenchymal transition (EMT)-markers were expressed in HT-29 infected with P. micra. Overall, the present study elucidated exacerbated oncogenic properties of P. micra in HT-29 via aberrant cell proliferation, enhanced wound healing, inflammation, up-regulation of UPPs, and activation of EMT pathways.
  13. Mohamad Zamberi NN, Abuhamad AY, Low TY, Mohtar MA, Syafruddin SE
    CRISPR J, 2024 Apr;7(2):73-87.
    PMID: 38635328 DOI: 10.1089/crispr.2023.0078
    Clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing is evolving into an essential tool in the field of biological and medical research. Notably, the development of catalytically deactivated Cas9 (dCas9) enzyme has substantially broadened its traditional boundaries in gene editing or perturbation. The conjugation of dCas9 with various molecular effectors allows precise control over transcriptional processes, epigenetic modifications, visualization of chromosomal dynamics, and several other applications. This expanded repertoire of CRISPR-Cas9 applications has emerged as an invaluable molecular tool kit that empowers researchers to comprehensively interrogate and gain insights into health and diseases. This review delves into the advancements in Cas9 protein engineering, specifically on the generation of various dCas9 tools that have significantly enhanced the CRISPR-based technology capability and versatility. We subsequently discuss the multifaceted applications of dCas9, especially in interrogating the regulation and function of genes that involve in supporting cancer pathogenesis. In addition, we also delineate the designing and utilization of dCas9-based tools as well as highlighting its current constraints and transformative potentials in cancer research.
  14. Low TY, Chen YJ, Ishihama Y, Chung MCM, Cordwell S, Poon TCW, et al.
    Mol Cell Proteomics, 2022 Dec;21(12):100436.
    PMID: 36309314 DOI: 10.1016/j.mcpro.2022.100436
    In 2021, the Asia-Oceania Human Proteome Organization (AOHUPO) initiated a new endeavor named the AOHUPO Online Education Series with the aim to promote scientific education and collaboration, exchange of ideas and culture among the young scientists in the AO region. Following the warm participation, the AOHUPO organized the second series in 2022, with the theme "The Renaissance of Clinical Proteomics: Biomarkers, Imaging and Therapeutics". This time, the second AOHUPO Online Education Series was hosted by the UKM Medical Molecular Biology Institute (UMBI) affiliated to the National University of Malaysia (UKM) in Kuala Lumpur, Malaysia on three consecutive Fridays (11th, 18th and 25th of March). More than 300 participants coming from 29 countries/regions registered for this 3-days event. This event provided an amalgamation of six prominent speakers and all participants whose interests lay mainly in applying MS-based and non-MS-based proteomics for clinical investigation.
  15. Zhong X, Xiong Y, Wei D, Wang S, Xiao Z, Liu M, et al.
    Complement Ther Med, 2020 Aug;52:102491.
    PMID: 32951740 DOI: 10.1016/j.ctim.2020.102491
    BACKGROUND: Inconsistencies exist with regard to effect of maternal vitamin D supplementation on infant vitamin D status. The inconsistencies could be attributed to numerous factors, such as duration of intervention and dosage, among others. In this work, we conducted a systematic review and meta-analysis to determine the influence of maternal vitamin D supplementation on infant vitamin D status.

    METHODS: A comprehensive systematic search was performed in Scopus, EMBASE, Web of Science, and PubMed/MEDLINE, by investigators, from database inception until November 2019, without using any restrictions. Weighted mean difference (WMD) with the 95 % CI was used for assessing the effects of maternal vitamin D supplementation on 25(OH) D levels in infants.

    RESULTS: Overall results from 14 studies revealed a non-significant effect of maternal vitamin D administration on the level of 25(OH) D in breastfeeding infants (WMD: -0.464 ng/mL, 95 % CI: -6.68 to 5.75, p = 0.884, I2 = 98 %). Subgroup analyses demonstrated that vitamin D supplementation dosage ≥2000 IU/day (WMD: 9 ng/mL, 95 % CI: 8.19, 9.82, I2 = 99 %) and intervention duration ≥20 weeks (WMD: 16.20 ng/mL, 95 % CI: 14.89, 17.50, I2 = 99 %) significantly increased 25(OH) D.

    CONCLUSIONS: The main results indicate a non-significant increase in infant vitamin D following maternal vitamin D supplementation. Additionally, vitamin D supplementation dosage ≥2000 IU/day and intervention duration ≥20 weeks significantly increased infant 25(OH) D.

  16. Rumpret M, von Richthofen HJ, van der Linden M, Westerlaken GHA, Talavera Ormeño C, Low TY, et al.
    Eur J Immunol, 2021 Jun 19.
    PMID: 34145909 DOI: 10.1002/eji.202149278
    Signal inhibitory receptor on leukocytes-1 (SIRL-1) is an inhibitory receptor with a hitherto unknown ligand, and is expressed on human monocytes and neutrophils. SIRL-1 inhibits myeloid effector functions such as reactive oxygen species (ROS) production. In this study, we identify S100 proteins as SIRL-1 ligands. S100 proteins are composed of two calcium-binding domains. Various S100 proteins are damage-associated molecular patterns (DAMPs) released from damaged cells, after which they initiate inflammation by ligating activating receptors on immune cells. We now show that the inhibitory SIRL-1 recognizes individual calcium-binding domains of all tested S100 proteins. Blocking SIRL-1 on human neutrophils enhanced S100 protein S100A6-induced ROS production, showing that S100A6 suppresses neutrophil ROS production via SIRL-1. Taken together, SIRL-1 is an inhibitory receptor recognizing the S100 protein family of DAMPs. This may help limit tissue damage induced by activated neutrophils.
  17. Alhabeeb H, Baradwan S, Kord-Varkaneh H, Tan SC, Low TY, Alomar O, et al.
    Eat Weight Disord, 2021 Oct;26(7):2117-2125.
    PMID: 33423153 DOI: 10.1007/s40519-020-01101-4
    BACKGROUND AND OBJECTIVE: Very few studies have investigated the relationship between body mass index (BMI) and risk of urinary tract infection (UTI), and conclusions from these available studies have been inconsistent. To resolve this inconsistency, we performed a systematic review and meta-analysis to precisely examine the association between BMI and UTI.

    METHODS: This meta-analysis was performed based on the PRISMA recommendations. PubMed, Web of Science, Scopus, Embase, and Google Scholar databases were searched for all published observational studies that reported the risk of UTI based on BMI categories up to March 2020.

    RESULTS: Fourteen (n = 14) articles comprising 19 studies in different populations met our inclusion criteria. The overall analysis showed a significant increased risk of UTI in subjects affected by obesity vs. individuals without obesity (RR = 1.45; 95% CI: 1.28 - 1.63; I2 = 94%), and a non-significant increased risk of UTI in subjects who were overweight (RR = 1.03; 95% CI: 0.98 - 1.10; I2 = 49.6%) and underweight (RR = 0.99; 95% CI: 0.81 - 21; I2 = 0.0%) when compared to subjects who had normal weight. In the stratified analysis, we showed that obesity increased the risk of UTI in females (RR = 1.63; 95% CI: 1.38 - 1.93) and in subjects below 60 years old (RR = 1.53; 95% CI: 1.33 - 1.75).

    CONCLUSION: This systematic review and meta-analysis recognized a significant relationship between BMI and incidence of UTI in obese vs. non-obese subjects, as well as in females and in individuals below 60 years old.

  18. Jiang Q, Lou K, Hou L, Lu Y, Sun L, Tan SC, et al.
    Complement Ther Med, 2020 May;50:102360.
    PMID: 32444042 DOI: 10.1016/j.ctim.2020.102360
    BACKGROUND: Data about the effects of resistance exercise on level of IGF-1 in the serum are conflicting. To resolve this inconsistency, we performed a systematic review and meta-analysis to precisely examine the effects of resistance exercise on the levels of serum IGF-1.

    METHODS: PubMed, Scopus, Web of Science, and Embase databases were systematically searched from their inceptions until 10 December 2019 for randomized controlled trials (RCTs) comparing individuals who underwent resistance training and control participants. We applied a random-effects model to calculate the weighted mean difference (WMD).

    RESULTS: 33 trials reported IGF-1 level as an outcome measure. The pooled estimate demonstrated a significant increase in IGF-1 (WMD: 10.34 ng/ml, 95 % CI: 4.93, 15.74, p = 0.000, I2 = 90.3 %) after resistance training compared with the control group. Subgroup analysis demonstrated that the increase in IGF-1 levels following resistance training was only statistically significant in treatment duration ≤16 weeks (WMD: 8.04 ng/ml), participants aged more than 60 years old (WMD: 9.84 ng/ml); and in women (WMD: 17.27 ng/ml). Subsequent analysis of the relationship between participants' age with plasma IGF-1 alterations revealed a U shape correlation in non-liner dose response, in which resistance training resulted in a declined IGF-1 level up to 40 years of age. Beyond 40 years old, the IGF-1 level was increased following resistance training.

    CONCLUSION: We have successfully demonstrated that resistance training was associated with an increased IGF-1 level among those who received the training for ≤16 weeks, among participants older than 60 years old, and among women. Further studies are warranted to clarify the mechanisms underlying the influence of resistance training on IGF-1.

  19. Fatahi S, Nazary-Vannani A, Sohouli MH, Mokhtari Z, Kord-Varkaneh H, Moodi V, et al.
    Crit Rev Food Sci Nutr, 2021;61(20):3383-3394.
    PMID: 32744094 DOI: 10.1080/10408398.2020.1798350
    Inconsistencies exist with regard to influence of fasting and energy-restricting diets on markers of glucose and insulin controls. To address these controversial, this study was conducted to determine the impact of fasting diets on fasting blood sugars (FBSs), insulin, homeostatic model assessment insulin resistance (HOMA-IR) and hemoglobin A1c (HbA1c) levels. A comprehensive systematic search was carried out in electronic databases, i.e., Scopus, PubMed, and Web of Science through June 2019 for RCTs that investigated the impact of fasting and energy-restricting diets on circulating FBS, insulin, HOMA-IR and HbA1c levels from. Weighted mean difference (WMD) with the 95% CI were used for estimating combined effect size. The subgroup analysis was applied to specify the source of heterogeneity among articles. Pooled results from 30 eligible articles with 35 arms demonstrated a significant decrease in FBS (WMD): -3.376 mg/dl, 95% CI: -5.159, -1.594, p 8 weeks had a greater reduction in FBS, insulin and HOMA-IR level compared with other subgroups. The evidence from available studies suggests that the fasting or energy-restricting diets leads to significant reductions in FBS, insulin and HOMA-IR level and has modest, but, non-significant effects on HbA1c levels.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links