METHODS: We conducted a cross-sectional study to assess the correlation between HCV Ag and HCV RNA and to identify the prevalence of active HCV infection among HCV seropositive HD patients from dialysis centres across West Malaysia from July 2019 to May 2020. Pre-dialysis blood was taken and tested for both HCV Ag and HCV RNA tests. HCV Ag was tested with Abbott ARCHITECT HCV Ag test.
RESULTS: We recruited 112 seropositive HD patients from 17 centres with mean age of 54.04 ± 11.62 years, HD vintage of 14.1 ± 9.7 years, and male constitute 59.8% (67) of the study population. HCV Ag correlates well with HCV RNA (Spearman test coefficient 0.833, p 3000 IU/mL, HCV Ag had a higher sensitivity of 95.1% and greater correlation (Spearman test coefficient 0.897, p
METHODOLOGY: All sera for AT1R-Ab were collected at the University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The sera were centrifuged and kept refrigerated at -80 °C before being transported to the South Australian Transplantation and Immunogenetics Laboratory (SATIS). Enzyme-linked immunosorbent assay kit (One Lambda) was used for the detection of AT1R-Ab, and it was performed according to the manufacturer's instructions. The level of >17.1 U/mL was considered to be AT1R-Ab positive; 10.0-17.1 U/mL at risk, and <10.0 U/mL negative.
RESULTS: A total of 115 samples were collected from 99 patients pre and post-kidney transplant recipients. From the pre-transplant sera (n = 68) 17.7% were positive, 35.3% were at risk and 47.0% were negative. The positive AT1R-Ab cohort were relatively younger, with a mean age of 34.7 ± 8.3 years old and statistically significant, with a p-value of 0.028. Among the sera that were tested positive, 19.0% were from the Chinese ethnicity, 6.7% from Malay and 16.7% from Indian. There was no difference in the rejection episodes, persistent or de novo HLA-DSA, and graft function between the group (AT1R-Ab negative vs AT1R-Ab at risk and positive) and the results were consistent in a model adjusted for all potential confounders.
CONCLUSION: The prevalence of positive (>17.1 U/mL) pre-transplant AT1R-Ab was 17.7% and 35.3% were at risk (10.0-17.1 U/mL) in our pre-transplant cohort.
METHODS: 100 CKD stage 3-4 patients were included in the study. Direct chemiluminesent immunoassay was used to determine the level of serum 25-hydroxyvitamin D. All subjects underwent a carotid ultrasound to measure common carotid artery intima-media thickness (CCA-IMT) and to assess the presence of carotid plaques or significant stenosis (≥50 %). Vitamin D deficiency was defined as serum 25-hydroxyvitamin D
MATERIALS AND METHODS: A total of 140 patients who had compatible ABO blood type with negative T-cell lymphocytotoxicity crossmatch were included in the study and 25% of them were spousal transplant donors. No remarkable differences in acute rejection rate, graft survival, patient survival and serum creatinine level were observed between the spousal and living-related donor groups.
RESULTS: The spousal donor group had a higher degree of HLA mismatch than the living-related donor group. HLA-A mismatch was associated with increased rejection risk at 6 months (odds ratio [OR], 2.75; P = 0.04), 1 year (OR, 2.54; P = 0.03) and 3 years (OR, 3.69; P = 0.001). It was also observed in the deleterious effects of HLA-B and HLA-DQ loci when the number of antigen mismatches increased. The risk was 7 times higher in patients with ≥1 mismatch at HLA-A, HLA-B and HLA-DR loci than those who did not have a mismatch at these loci at 6 months (P = 0.01), 1 year (P = 0.03) and 3 years (P = 0.003).
CONCLUSION: A good match for HLA-A, HLA-B, HLA-DR and HLA-DQ can prevent acute rejection risk in renal transplant patients. Consequently, spousal donor transplants could be a safe intervention in renal patients.
METHOD: A multi-centered, cross-sectional study design was conducted from February 2017 to September 2017 at a tertiary hospital and its affiliated dialysis centers, in Kuala Lumpur, Malaysia. Included were patients > 18 years of age who were undergoing hemodialysis and could understand Malay. Participants were asked to fill the Malay 5D-itch scale and the Malay Pittsburgh sleep quality index (PSQI) upon recruitment.
RESULTS: A total of 334/334 patients were recruited (response rate = 100%). The majority were male (59.6%) and Chinese (61.7%). A total of 61.3% had pruritus, of which most patients (63.4%) reported that their pruritus was mild. More than half (54.1%) reported that they slept > 6 h, and 93.2% experienced no sleep disturbances during the night. However; the overall PSQI median score [IQR] was 6.0 [5.0-9.0]. No significant association was found between demographic and clinical characteristics of patients with the severity of pruritus. Patients with moderate to severe pruritus were found to be 5.47 times more likely to experience poor sleep quality as compared to patients with mild or no pruritus.
CONCLUSION: In Malaysia, the prevalence of CKD-aP was 61.3%, of which the majority reported that their pruritus was mild. Patients with moderate to severe pruritus were found to be 5.47 times more likely to experience poor sleep quality as compared to patients with mild or no pruritus.
Methodology: A total of 362 renal allograft protocol biopsies were performed in adult recipients of kidney transplantation between 2012 and 2017. After excluding those with poor quality or those performed with a baseline serum creatinine level >200 umol/L, we analyzed 334 (92.3%) biopsies. Histology reports were reviewed and categorized into histoimmunological and nonimmunological changes. The immunological changes were subcategorized into the following: (1) no acute rejection (NR), (2) borderline changes (BC), and (3) subclinical rejection (SCR). Nonimmunological changes were subcategorized into the following: (1) chronicity including interstitial fibrosis/tubular atrophy (IFTA), chronic T-cell-mediated rejection (TCMR), unspecified chronic lesions, and arterionephrosclerosis, (2) de novo glomerulopathy/recurrence of primary disease (RP), and (3) other clinically unsuspected lesions (acute pyelonephritis, calcineurin inhibitors toxicity, postinfective glomerulonephritis, and BK virus nephropathy). Risk factors associated with SCR were assessed.
Results: For the histoimmunological changes, 161 (48.2%) showed NR, 145 (43.4%) were BC, and 28 (8.4%) were SCR. These clinical events were more pronounced for the first 5 years; our data showed BC accounted for 59 (36.4%), 64 (54.2%), and 22 (40.7%) biopsies within <1 year, 1-5 years, and > 5 years, respectively (p = 0.011). Meanwhile, the incidence for SCR was 6 (3.7%) biopsies in <1 year, 18 (15.3%) in 1-5 years, and 4 (7.4%) in >5 years after transplantation (p=0.003). For the nonimmunological changes, chronicity, de novo glomerulopathy/RP, and other clinically unsuspected lesions were seen in 40 (12%), 10 (3%), and 12 (3.6%) biopsies, respectively. Living-related donor recipients were associated with decreased SCR (p=0.007).
Conclusions: Despite having a stable renal function, our transplant recipients had a significant number of subclinical rejection on renal allograft biopsies.
METHODS: Plasma protein profiling was performed for HIV patients with CKD presented with negative/trace proteinuria (non-proteinuric) (n = 8) and their matched non-CKD controls, using two-dimensional gel electrophoresis (2DE); selected protein candidates were identified using mass spectrometry. Subsequently, altered plasma abundance of protein candidates were verified using Western blotting in HIV-infected subjects with non-proteinuric CKD (n = 8), proteinuric CKD (n = 5), and their matched non-CKD controls, as well as in HIV-uninfected subjects with impaired kidney function (n = 3) and their matched controls.
RESULTS: Analysis of 2DE found significantly altered abundance of five protein candidates between HIV-infected patients with non-proteinuric CKD and without CKD: alpha-1-microglobulin (A1M), serum albumin (ALB), zinc-alpha-2-glycoprotein (AZGP1), haptoglobin (HP), and retinol binding protein (RBP4). Western blotting showed an increased abundance of A1M and HP in HIV-infected patients with non-proteinuric CKD compared to their non-CKD controls, whereas A1M, AZGP1, and RBP4 were significantly increased in HIV-infected patients with proteinuric CKD compared to their non-CKD controls. Such pattern was not found in HIV-uninfected subjects with impaired kidney function.
CONCLUSION: The data suggests four proteins that may be used as biomarkers of CKD in HIV-infected patients. Further validation in a larger cohort of HIV-infected patients is necessary for assessing the clinical use of these proposed biomarkers for CKD.
CONCLUSION: Overall, this review discusses some of the previously studied and reported natural products and their mechanisms of action which may potentially be redirected into ADPKD.
METHODS: We performed a cross-sectional study on KTRs with functioning renal allograft and at least 3 months post transplant. Dietary protein, salt, and dietary acid load were estimated using 24-hour urine collection. Demographic characteristics, concomitant medications, medical history, and laboratory results were obtained from electronic medical records.
RESULTS: A total of 204 KTRs were recruited with median age of 48 years (interquartile range [IQR], 18 years); male to female ratio was 61:39. A total of 79.9% (n = 163) were living related kidney transplants. The median duration after transplant was 71 months (IQR, 131 months), and median eGFR was 65 mL/min/1.73 m2 (IQR, 25 mL/min/1.73 m2). The prevalence rates of proteinuria (defined as ≥ 0.5 g/d) and metabolic acidosis (defined as at least 2 readings of serum bicarbonate ≤ 22 mmol/L in the past 6 months) were 17.7 % and 6.2%, respectively. High dietary protein of > 1.2 g/kg ideal body weight (adjusted odds ratio, 3.13; 95% CI, 1.35-7.28; P = .008) was significantly associated with proteinuria. Dietary protein, salt, and acid load did not correlate with chronic metabolic acidosis.
CONCLUSIONS: The prevalence rate of proteinuria is consistent with published literature, but metabolic acidosis rate is extremely low in our cohort. High protein intake (> 1.2 g/kg ideal body weight) is a risk factor of proteinuria and may have negative impact on KTR outcome.
OBJECTIVE: We explore the use of CrCl and combined urea and creatinine clearance as an alternative for GFR assessment.
METHODS: A retrospective study involving 81 kidney donors from 2007 to 2020, with mGFR collected by chromium 51-labeled ethylenediaminetetraacetic acid (51Cr-EDTA) and CrCl and combined urea and creatinine clearance. We analyzed the performance of CrCl and combined urea and creatinine clearance against 51Cr-EDTA. Adequacy of urine volume was taken into consideration.
RESULTS: A total of 81 candidates with a mean age of 44.80 ± 10.77 years were enrolled. Mean mGFR from 51Cr-EDTA was 123.66 ± 26.91 mL/min/1.73 m2, and combined urea and creatinine clearance and CrCl were 122.13 ± 47.07 and 133.40 ± 36.32 mL/min/1.73 m2, respectively. CrCl overestimated 51Cr-EDTA. Though combined urea and creatinine clearance had minimal bias, it had a lower correlation coefficient (0.25 vs 0.43), lower precision (49.51 vs 38.10), and slightly lower accuracy within 30% of 51Cr-EDTA (74.07% vs 76.54%).
CONCLUSIONS: Combined urea and creatinine clearance did not improve the performance of CrCl. Nevertheless, it can potentially be used as first-line GFR assessment, followed by mGFR in selected donors, to ascertain threshold of safe kidney donation. A stringent urine collection method is essential to ensure accurate measurement.
Method: The English version of the 5D-IS was translated into Malay according to International Guidelines. Face and content validity was determined by an expert panel and pilot tested in patients with end-stage renal disease (ESRD). The M5D-IS was then validated in a tertiary hospital in Malaysia from May to June 2016. We recruited patients with (i.e., patients with ESRD) and without pruritus (i.e., patients with stage 1-3 CKD) (to determine if the M5D-IS could discriminate between the two groups), and administered the M5D-IS at baseline and 2 weeks later. Exploratory factor analysis was used to examine the construct validity. Internal consistency was assessed using Cronbach's alpha and intraclass correlation coefficient was calculated to assess the reliability of the instrument.
Results: A total of 70 participants were recruited (response rate = 100%). The majority were males (51.4%) and Malay (67.1%). Exploratory factor analysis revealed that the 5D-IS had 2-factor loadings: "daily routine activity" and "pattern of itching," which explained 77.7% of the variance. The overall score of the M5D-IS, as well as for each domain, was significantly worse in participants with pruritus (9.83 ± 0.35), compared to those without pruritus (5.51 ± 0.93, p
METHODS: This study was carried out in two phases: the translation and cultural adaptation phase and the validation phase. The instrument was translated from English to Malay and then adapted and validated in a sample of 337 patients with CKD stages 3-4 attending a nephrology clinic in a tertiary hospital in Malaysia. Structural validity was evaluated by exploratory factor analysis. The instrument's reliability was assessed by internal consistency and test-retest reliability. The correlations between the MCKD-SM and kidney disease knowledge and the MCKD-SM and self-efficacy were hypothesised a priori and investigated.
RESULTS: The MCKD-SM instrument has 29 items grouped into three factors: 'Understanding and Managing My CKD', 'Seeking Support' and 'Adherence to Recommended Regimen'. The three factors accounted for 56.3% of the total variance. Each factor showed acceptable internal reliability, with Cronbach's α from 0.885 to 0.960. The two-week intra-rater test-retest reliability intraclass correlation coefficient values for all items ranged between 0.938 and 1.000. The MCKD-SM scores significantly correlated with kidney disease knowledge (r = 0.366, p