Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Chew ZX, Lim CL, Ng KY, Chye SM, Ling APK, Koh RY
    CNS Neurol Disord Drug Targets, 2023;22(3):329-352.
    PMID: 34970960 DOI: 10.2174/1871527321666211231100255
    Parkinson's disease (PD) is a progressive neurodegenerative disease characterised by reduced dopamine levels in the substantial nigra. This may lead to typical motor features such as bradykinesia, resting tremors and rigid muscles, as well as non-motor symptoms such as neuropsychiatric symptoms, sleep disorders, autonomic dysfunction, and sensory disturbances. Inhibitors of monoamine oxidase B (MAO-B) are used to alleviate symptoms by reducing monoamine oxidase-catalysed degradation of dopamine; hence, preserving functional levels of dopamine. The very first MAO-B inhibitor used therapeutically was selegiline, followed by rasagiline, its indane derivative which has superior efficacy and selectivity. Both inhibitors can be used as monotherapy or in combination with other anti- Parkinson drugs. Safinamide, a reversible MAO-B inhibitor that utilises both dopaminergic and non-dopaminergic mechanisms, was recently approved by the European Medicines Agency (EMA) (2015) and U.S. FDA (2017) as an add-on therapy for patients with mid- or late-stage Parkinson's disease. Furthermore, MAO-B inhibitors were found to be associated with potential neuroprotective and disease modifying effects. However, evidence of their efficacy and role in PD models is scarce and warrants further investigation.
  2. Lee JY, Wong CY, Koh RY, Lim CL, Kok YY, Chye SM
    Yale J Biol Med, 2024 Jun;97(2):205-224.
    PMID: 38947104 DOI: 10.59249/JNKB9714
    Neuroinflammation, toxic protein aggregation, oxidative stress, and mitochondrial dysfunction are key pathways in neurodegenerative diseases like Alzheimer's disease (AD). Targeting these mechanisms with antioxidants, anti-inflammatory compounds, and inhibitors of Aβ formation and aggregation is crucial for treatment. Marine algae are rich sources of bioactive compounds, including carbohydrates, phenolics, fatty acids, phycobiliproteins, carotenoids, fatty acids, and vitamins. In recent years, they have attracted interest from the pharmaceutical and nutraceutical industries due to their exceptional biological activities, which include anti-inflammation, antioxidant, anticancer, and anti-apoptosis properties. Multiple lines of evidence have unveiled the potential neuroprotective effects of these multifunctional algal compounds for application in treating and managing AD. This article will provide insight into the molecular mechanisms underlying the neuroprotective effects of bioactive compounds derived from algae based on in vitro and in vivo models of neuroinflammation and AD. We will also discuss their potential as disease-modifying and symptomatic treatment strategies for AD.
  3. Lim CL, Nogawa T, Uramoto M, Okano A, Hongo Y, Nakamura T, et al.
    J Antibiot (Tokyo), 2014 Apr;67(4):323-9.
    PMID: 24496142 DOI: 10.1038/ja.2013.144
    Two novel quinomycin derivatives, RK-1355A (1) and B (2), and one known quinomycin derivative, UK-63,598 (3), were isolated from a microbial metabolites fraction library of Streptomyces sp. RK88-1355 based on Natural Products Plot screening. The structural elucidation of 1 and 2 was established through two-dimensional NMR and mass spectrometric measurements. They belong to a class of quinomycin antibiotics family having 3-hydroxyquinaldic acid and a sulfoxide moiety. They are the first examples for natural products as a quinoline type quinomycin having a sulfoxide on the intramolecular cross-linkage. They showed potent antiproliferative activities against various cancer cell lines and they were also found to exhibit moderate antibacterial activity.
  4. Shahar S, Lee LK, Rajab N, Lim CL, Harun NA, Noh MF, et al.
    Nutr Neurosci, 2013 Jan;16(1):6-12.
    PMID: 23321337 DOI: 10.1179/1476830512Y.0000000013
    The influence of nutritional parameters and genetic susceptibility on poor cognitive impairment has been documented; however, the association between lipid-soluble vitamins with genetic susceptibility on mild cognitive impairment (MCI) has not yet been studied extensively.
  5. Bala U, Leong MP, Lim CL, Shahar HK, Othman F, Lai MI, et al.
    PLoS One, 2018;13(5):e0197711.
    PMID: 29795634 DOI: 10.1371/journal.pone.0197711
    BACKGROUND: Down syndrome (DS) is a genetic disorder caused by presence of extra copy of human chromosome 21. It is characterised by several clinical phenotypes. Motor dysfunction due to hypotonia is commonly seen in individuals with DS and its etiology is yet unknown. Ts1Cje, which has a partial trisomy (Mmu16) homologous to Hsa21, is well reported to exhibit various typical neuropathological features seen in individuals with DS. This study investigated the role of skeletal muscles and peripheral nerve defects in contributing to muscle weakness in Ts1Cje mice.

    RESULTS: Assessment of the motor performance showed that, the forelimb grip strength was significantly (P<0.0001) greater in the WT mice compared to Ts1Cje mice regardless of gender. The average survival time of the WT mice during the hanging wire test was significantly (P<0.0001) greater compared to the Ts1Cje mice. Also, the WT mice performed significantly (P<0.05) better than the Ts1Cje mice in the latency to maintain a coordinated motor movement against the rotating rod. Adult Ts1Cje mice exhibited significantly (P<0.001) lower nerve conduction velocity compared with their aged matched WT mice. Further analysis showed a significantly (P<0.001) higher population of type I fibres in WT compared to Ts1Cje mice. Also, there was significantly (P<0.01) higher population of COX deficient fibres in Ts1Cje mice. Expression of Myf5 was significantly (P<0.05) reduced in triceps of Ts1Cje mice while MyoD expression was significantly (P<0.05) increased in quadriceps of Ts1Cje mice.

    CONCLUSION: Ts1Cje mice exhibited weaker muscle strength. The lower population of the type I fibres and higher population of COX deficient fibres in Ts1Cje mice may contribute to the muscle weakness seen in this mouse model for DS.

  6. Boonhok R, Sangkanu S, Phumjan S, Jongboonjua R, Sangnopparat N, Kwankaew P, et al.
    PeerJ, 2022;10:e13657.
    PMID: 35811814 DOI: 10.7717/peerj.13657
    BACKGROUND: Curcumin is an active compound derived from turmeric, Curcuma longa, and is known for its benefits to human health. The amoebicidal activity of curcumin against Acanthamoeba triangularis was recently discovered. However, a physiological change of intracellular pathways related to A. triangularis encystation mechanism, including autophagy in the surviving amoeba after curcumin treatment, has never been reported. This study aims to investigate the effect of curcumin on the survival of A. triangularis under nutrient starvation and nutrient-rich condition, as well as to evaluate the A. triangularis encystation and a physiological change of Acanthamoeba autophagy at the mRNA level.

    METHODS: In this study, A. triangularis amoebas were treated with a sublethal dose of curcumin under nutrient starvation and nutrient-rich condition and the surviving amoebas was investigated. Cysts formation and vacuolization were examined by microscopy and transcriptional expression of autophagy-related genes and other encystation-related genes were evaluated by real-time PCR.

    RESULTS: A. triangularis cysts were formed under nutrient starvation. However, in the presence of the autophagy inhibitor, 3-methyladenine (3-MA), the percentage of cysts was significantly reduced. Interestingly, in the presence of curcumin, most of the parasites remained in the trophozoite stage in both the starvation and nutrient-rich condition. In vacuolization analysis, the percentage of amoebas with enlarged vacuole was increased upon starvation. However, the percentage was significantly declined in the presence of curcumin and 3-MA. Molecular analysis of A. triangularis autophagy-related (ATG) genes showed that the mRNA expression of the ATG genes, ATG3, ATG8b, ATG12, ATG16, under the starvation with curcumin was at a basal level along the treatment. The results were similar to those of the curcumin-treated amoebas under a nutrient-rich condition, except AcATG16 which increased later. On the other hand, mRNA expression of encystation-related genes, cellulose synthase and serine proteinase, remained unchanged during the first 18 h, but significantly increased at 24 h post treatment.

    CONCLUSION: Curcumin inhibits cyst formation in surviving trophozoites, which may result from its effect on mRNA expression of key Acanthamoeba ATG-related genes. However, further investigation into the mechanism of curcumin in A. triangularis trophozoites arrest and its association with autophagy or other encystation-related pathways is needed to support the future use of curcumin.

  7. Omeyer LCM, Duncan EM, Abreo NAS, Acebes JMV, AngSinco-Jimenez LA, Anuar ST, et al.
    Sci Total Environ, 2023 May 20;874:162502.
    PMID: 36868274 DOI: 10.1016/j.scitotenv.2023.162502
    Southeast (SE) Asia is a highly biodiverse region, yet it is also estimated to cumulatively contribute a third of the total global marine plastic pollution. This threat is known to have adverse impacts on marine megafauna, however, understanding of its impacts has recently been highlighted as a priority for research in the region. To address this knowledge gap, a structured literature review was conducted for species of cartilaginous fishes, marine mammals, marine reptiles, and seabirds present in SE Asia, collating cases on a global scale to allow for comparison, coupled with a regional expert elicitation to gather additional published and grey literature cases which would have been omitted during the structured literature review. Of the 380 marine megafauna species present in SE Asia, but also studied elsewhere, we found that 9.1 % and 4.5 % of all publications documenting plastic entanglement (n = 55) and ingestion (n = 291) were conducted in SE Asian countries. At the species level, published cases of entanglement from SE Asian countries were available for 10 % or less of species within each taxonomic group. Additionally, published ingestion cases were available primarily for marine mammals and were lacking entirely for seabirds in the region. The regional expert elicitation led to entanglement and ingestion cases from SE Asian countries being documented in 10 and 15 additional species respectively, highlighting the utility of a broader approach to data synthesis. While the scale of the plastic pollution in SE Asia is of particular concern for marine ecosystems, knowledge of its interactions and impacts on marine megafauna lags behind other areas of the world, even after the inclusion of a regional expert elicitation. Additional funding to help collate baseline data are critically needed to inform policy and solutions towards limiting the interactions of marine megafauna and plastic pollution in SE Asia.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links