OBJECTIVE: Aim of the present study was to analyse the molecular interaction of nitrogen heterocyclic based drugs (hydroxychloroquine, remdesivir and lomefloxacin) with various SARSCoV- 2 proteins (RdRp, PLPro, Mpro and spike proteins) using a molecular docking approach.
METHODS: We have performed docking study using PyRx software, and Discovery Studio Visualizer was used to visualise the molecular interactions. The designed nitrogen heterocyclic analogues were checked for Lipinski's rule of five, Veber's Law and Adsorption, Distribution, Metabolism, and Excretion (ADME) threshold. After obtaining the docking results of existing nitrogen heterocyclic drugs, we modified the selected drugs to get molecules with better affinity against SARS-CoV-2.
RESULTS: Hydroxychloroquine bound to RdRp, spike protein, PLPro and Mpro at -5.2, -5.1, -6.7 and -6.0 kcal/mol, while remdesivir bound to RdRp, spike protein, PLPro, and Mpro at -6.1, -6.9, -6.4 and -6.9 kcal/mol, respectively. Lomefloxacin bound to RdRp, spike protein, PLPro and Pro at -6.4, -6.6, -7.2 and -6.9 kcal/mol. ADME studies of all these compounds indicated lipophilicity and high gastro intestine absorbability. The modified drug structures possess better binding efficacy towards at least one target than their parent compounds.
CONCLUSION: The outcome reveals that the designed nitrogen heterocyclics could contribute to developing the potent inhibitory drug SARS-CoV-2 with strong multi-targeted inhibition ability and reactivity.
METHODS: In the current study, multivariant traits were used to define 50 genotypes in the first year and 10 genotypes in the second year. The phenotypic correlations among all traits in the entire germplasm were assessed, and the data acquired for all quantitative characters were subjected to analysis of variance for augmented block design. Furthermore, WINDOWS STAT statistical software was used to carry out a principal component analysis (PCA). The presence of substantial variations in most symptoms was shown by analysis of variance.
RESULTS: Genotypic coefficient of variation (GCV) projections for grain yields were the highest, followed by panicle lengths and biological yields. Plant height and leaf length had the highest PCV estimates, followed by leaf width. Low GCV and phenotypic coefficient of variation (PCV) were measured as leaf length and 50% flowering in days. According to the PCV study, direct selection based on characters, panicle weight, test weight, and straw weight had a high and positive effect on grain yield per plant in both the rainy and summer seasons, indicating the true relationship between these characters and grain yield per plant, which aids indirect selection for these traits and thus improves grain yield per plant. Variability in foxtail millet germplasm enables plant breeders to effectively select appropriate donor lines for foxtail millet genetic improvement.
DISCUSSION: Based on the average performance of genotypes considered superior in terms of grain yield components under Prayagraj agroclimatic conditions, the best five genotypes were: Kangni-7 (GS62), Kangni-1 (G5-14), Kangni-6 (GS-55), Kangni-5 (GS-389), and Kangni-4 (GS-368).
METHODS: A total of 168 CRE strains isolated from a tertiary teaching hospital from 2014-2015 were included in this study. The presence of carbapenemase genes and minimum inhibitory concentration of imipenem, meropenem and colistin were investigated. All carbapenem-resistant Klebsiella pneumoniae (K. pneumoniae) strains were characterised by PFGE. The risk factors of patients infected by CRE associated with in-hospital mortality were determined statistically.
RESULTS: The predominant CRE species isolated was K. pneumoniae. The carbapenemases detected were blaOXA-48, blaOXA-232, blaVIM and blaNDM of which blaOXA-48 was the predominant carbapenemase detected among 168 CRE strains. A total of 40 CRE strains harboured two different carbapenemase genes. A total of seven clusters and 48 pulsotypes were identified among 140 CRKp strains. A predominant pulsotype responsible for the transmission from 2014 to 2015 was identified. Univariate statistical analysis identified that the period between CRE isolation and start of appropriate therapy of more than 3 days was statistically associated with in-hospital mortality.
METHODS: An organic ethyl acetate extract of Penicillium verruculosum sponge-derived endophytic fungi from Spongia officinalis yielded seven different secondary metabolites which are purified through HPLC. The isolated compounds are of averufin (1), aspergilol-A (2), sulochrin (3), monomethyl sulochrin (4), methyl emodin (5), citreorosein (6), and diorcinol (7). All the seven isolated compounds were characterized by high-resolution NMR spectral studies. All isolated compounds', such as anticancer, antimicrobial, anti-tuberculosis, and antiviral, were subjected to bioactivity screening.
RESULTS: Out of seven tested compounds, compound (1) exhibits strong anticancer activity toward myeloid leukemia. HL60 cell lines have an IC50 concentration of 1.00μm, which is nearly significant to that of the standard anticancer drug taxol. A virtual computational molecular docking approach of averufin with HL60 antigens revealed that averufin binds strongly with the protein target alpha, beta-tubulin (1JFF), with a -10.98 binding score. Consecutive OSIRIS and Lipinski ADME pharmacokinetic validation of averufin with HL60 antigens revealed that averufin has good pharmacokinetic properties such as drug score, solubility, and mutagenic nature. Furthermore, aspergilol-A (2) is the first report on the Penicillium verruculosum fungal strain.
DISCUSSION: We concluded that averufin (1) isolated from Penicillium verruculosum can be taken for further preliminary clinical trials like animal model in-vivo studies and pharmacodynamic studies. A future prospect of in-vivo anticancer screening of averufin can be validated through the present experimental findings.