METHODS: The phenolic compounds of PKC were obtained by solvent extraction and the product rich in phenolic compounds was labeled as phenolic-enriched fraction (PEF). This fraction was evaluated for its phenolic compounds composition. The antioxidant activity of PEF was determined by using 1,1-diphenyl-2-picryl-hydrazil scavenging activity, ferric reducing antioxidant power, inhibition of ß-carotene bleaching, and thiobarbituric acid reactive substances assays. The cytotoxicity assay and molecular biomarkers analyses were performed to evaluate the cytoprotective effects of PEF towards aflatoxin B1 (AFB1)-induced cell damage.
RESULTS: The results showed that PEF contained gallic acid, pyrogallol, vanillic acid, caffeic acid, syringic acid, epicatechin, catechin and ferulic acid. The PEF exhibited free radical scavenging activity, ferric reducing antioxidant power, ß-carotene bleaching inhibition and thiobarbituric acid reactive substances inhibition. The PEF demonstrated cytoprotective effects in AFB1-treated chicken hepatocytes by reducing the cellular lipid peroxidation and enhancing antioxidant enzymes production. The viability of AFB1-treated hepatocytes was improved by PEF through up-regulation of oxidative stress tolerance genes and down-regulation of pro-inflammatory and apoptosis associated genes.
CONCLUSIONS: The present findings supported the proposition that the phenolic compounds present in PKC could be a potential cytoprotective agent towards AFB1 cytotoxicity.
Patients and methods: Twelve dogs were randomly assigned to two groups: ketamine-lidocaine-tramadol (KLT) and tramadol (T) groups. Both groups received intravenous tramadol 4 mg/kg body weight as premedication. Immediately after induction, the KLT group received ketamine and lidocaine at 0.5 and 2 mg/kg loading dose, followed by continuous rate infusion of 50 and 100 µg/kg/min, respectively, for 2 hours. Dogs in T group received saline bolus and continuous rate infusion at equi-volume. Intraoperatively, hemodynamic responses to surgical stimulation were recorded, whereas postoperative pain was evaluated using an algometer and short form of the Glasgow composite measure pain scale.
Results: Intraoperatively, hemodynamic responses to surgical stimulation were obtunded to a greater degree in KLT compared to T group. Postoperatively, the pain scores increased only for the first hour in KLT group, compared to 12 hours in T group. Mechanical thresholds at the abdomen decreased postoperatively between 12 and 60 hours in KLT group versus the entire 72 hours in T group. Thresholds at tibia and radius in both groups increased in the immediate 1 hour postoperatively, but decreased thereafter. Significant decrement of thresholds from baseline were detected in the tibia at 24, 42, and 60 hours in KLT group compared to 24-72 hours in T group, and in the radius between 36 and 48 hours in T group, but none in KLT group.
Conclusion: Addition of pre-emptive ketamine-lidocaine infusion to single intravenous dose of tramadol enhanced attenuation of central sensitization and improved intra- and postoperative analgesia.