Displaying publications 21 - 40 of 56 in total

Abstract:
Sort:
  1. Ngeow YF, Wong YL, Tan JL, Ong CS, Ng KP, Choo SW
    J Bacteriol, 2012 Dec;194(23):6662.
    PMID: 23144407 DOI: 10.1128/JB.01846-12
    Mycobacterium abscessus is an environmental bacterium with increasing clinical relevance. Here, we report the annotated whole-genome sequence of M. abscessus strain M152.
  2. Ngeow YF, Wee WY, Wong YL, Tan JL, Ongi CS, Ng KP, et al.
    J Bacteriol, 2012 Nov;194(21):6002-3.
    PMID: 23045507 DOI: 10.1128/JB.01455-12
    Mycobacterium abscessus is a ubiquitous, rapidly growing species of nontuberculous mycobacteria that colonizes organic surfaces and is frequently associated with opportunistic infections in humans. We report here the draft genome sequence of Mycobacterium abscessus strain M139, which shows genomic features reported to be characteristic of both Mycobacterium abscessus subsp. abscessus and Mycobacterium abscessus subsp. massiliense.
  3. Wong YL, Choo SW, Tan JL, Ong CS, Ng KP, Ngeow YF
    J Bacteriol, 2012 Aug;194(16):4475.
    PMID: 22843600 DOI: 10.1128/JB.00916-12
    The whole-genome sequence of Mycobacterium bolletii M24, isolated from the bronchoalveolar lavage fluid of a Malaysian patient, is reported here. The circular chromosome of 5,507,730 bp helped to clarify the taxonomic position of this organism within the M. abscessus complex and revealed the presence of proteins potentially important for pathogenicity in a human host.
  4. Choo SW, Wong YL, Leong ML, Heydari H, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Oct;194(20):5724.
    PMID: 23012295
    Mycobacterium abscessus is a species of rapidly growing nontuberculous mycobacteria that is frequently associated with opportunistic infections in humans. Here, we report the annotated genome sequence of M. abscessus strain M94, which showed an unusual cluster of tRNAs.
  5. Choo SW, Yusoff AM, Wong YL, Wee WY, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(18):5128.
    PMID: 22933758 DOI: 10.1128/JB.01096-12
    The genome of Mycobacterium massiliense M172, isolated from a human sputum sample, was sequenced using Illumina GA IIX technology and found to contain 5,204,460 bp, including putative genes for virulence and antibiotic resistance as well as a 92-kb genomic region most likely to correspond to a mycobacteriophage.
  6. Ngeow YF, Wong YL, Lokanathan N, Wong GJ, Ong CS, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(17):4786.
    PMID: 22887681 DOI: 10.1128/JB.01104-12
    We report the draft genome sequence of a clinical isolate, strain M115, identified as Mycobacterium massiliense, a member of the newly created taxon of Mycobacterium abscessus subspecies bolletii comb. nov.
  7. Choo SW, Wong YL, Tan JL, Ong CS, Wong GJ, Ng KP, et al.
    J Bacteriol, 2012 Sep;194(17):4778.
    PMID: 22887675 DOI: 10.1128/JB.01043-12
    Mycobacterium massiliense has recently been proposed as a member of Mycobacterium abscessus subsp. bolletii comb. nov. Strain M154, a clinical isolate from the bronchoalveolar lavage fluid of a Malaysian patient presenting with lower respiratory tract infection, was subjected to shotgun DNA sequencing with the Illumina sequencing technology to obtain whole-genome sequence data for comparison with other genetically related strains within the M. abscessus species complex.
  8. Choo SW, Ang MY, Dutta A, Tan SY, Siow CC, Heydari H, et al.
    Sci Rep, 2015 Dec 15;5:18227.
    PMID: 26666970 DOI: 10.1038/srep18227
    Mycobacterium spp. are renowned for being the causative agent of diseases like leprosy, Buruli ulcer and tuberculosis in human beings. With more and more mycobacterial genomes being sequenced, any knowledge generated from comparative genomic analysis would provide better insights into the biology, evolution, phylogeny and pathogenicity of this genus, thus helping in better management of diseases caused by Mycobacterium spp.With this motivation, we constructed MycoCAP, a new comparative analysis platform dedicated to the important genus Mycobacterium. This platform currently provides information of 2108 genome sequences of at least 55 Mycobacterium spp. A number of intuitive web-based tools have been integrated in MycoCAP particularly for comparative analysis including the PGC tool for comparison between two genomes, PathoProT for comparing the virulence genes among the Mycobacterium strains and the SuperClassification tool for the phylogenic classification of the Mycobacterium strains and a specialized classification system for strains of Mycobacterium abscessus. We hope the broad range of functions and easy-to-use tools provided in MycoCAP makes it an invaluable analysis platform to speed up the research discovery on mycobacteria for researchers. Database URL: http://mycobacterium.um.edu.my.
  9. Heydari H, Mutha NV, Mahmud MI, Siow CC, Wee WY, Wong GJ, et al.
    Database (Oxford), 2014;2014:bau010.
    PMID: 24578355 DOI: 10.1093/database/bau010
    With the advent of high-throughput sequencing technologies, many staphylococcal genomes have been sequenced. Comparative analysis of these strains will provide better understanding of their biology, phylogeny, virulence and taxonomy, which may contribute to better management of diseases caused by staphylococcal pathogens. We developed StaphyloBase with the goal of having a one-stop genomic resource platform for the scientific community to access, retrieve, download, browse, search, visualize and analyse the staphylococcal genomic data and annotations. We anticipate this resource platform will facilitate the analysis of staphylococcal genomic data, particularly in comparative analyses. StaphyloBase currently has a collection of 754 032 protein-coding sequences (CDSs), 19 258 rRNAs and 15 965 tRNAs from 292 genomes of different staphylococcal species. Information about these features is also included, such as putative functions, subcellular localizations and gene/protein sequences. Our web implementation supports diverse query types and the exploration of CDS- and RNA-type information in detail using an AJAX-based real-time search system. JBrowse has also been incorporated to allow rapid and seamless browsing of staphylococcal genomes. The Pairwise Genome Comparison tool is designed for comparative genomic analysis, for example, to reveal the relationships between two user-defined staphylococcal genomes. A newly designed Pathogenomics Profiling Tool (PathoProT) is also included in this platform to facilitate comparative pathogenomics analysis of staphylococcal strains. In conclusion, StaphyloBase offers access to a range of staphylococcal genomic resources as well as analysis tools for comparative analyses. Database URL: http://staphylococcus.um.edu.my/.
  10. Ang MY, Dymock D, Tan JL, Thong MH, Tan QK, Wong GJ, et al.
    Genome Announc, 2013;1(6).
    PMID: 24309744 DOI: 10.1128/genomeA.01025-13
    Parvimonas micra is an important oral microbe that has the ability to grow and proliferate within oral biofilms and is involved in periodontal disease, leading to gingival bleeding, gingival recession, alveolar bone loss, and tooth mobility. However, occasionally these normally oral pathogens can cause infections at other sites in the body. We present the genome sequence of Parvimonas micra strain A293, a smooth Parvimonas micra strain isolated from an abdominal abscess from a patient at Barts Hospital, London, United Kingdom.
  11. Ang MY, Dymock D, Tan JL, Thong MH, Tan QK, Wong GJ, et al.
    Genome Announc, 2014;2(1).
    PMID: 24526626 DOI: 10.1128/genomeA.00009-14
    Fusobacterium nucleatum is a bacterial species commonly detected in dental plaque within the human oral cavity, with some strains associated with periodontal disease, one of the most common clinical bacterial infections in the human body. The exact mechanisms of its pathogenesis are still not completely understood. In this study, we present the genome sequence and annotation of F. nucleatum strain W1481, isolated from a periodontal pocket of a dental patient at the University of Bristol, United Kingdom, the 16S rRNA gene sequencing of which showed it to be markedly different from the five previously named subspecies.
  12. Choo SW, Wee WY, Ngeow YF, Mitchell W, Tan JL, Wong GJ, et al.
    Sci Rep, 2014;4:4061.
    PMID: 24515248 DOI: 10.1038/srep04061
    Mycobacterium abscessus (Ma) is an emerging human pathogen that causes both soft tissue infections and systemic disease. We present the first comparative whole-genome study of Ma strains isolated from patients of wide geographical origin. We found a high proportion of accessory strain-specific genes indicating an open, non-conservative pan-genome structure, and clear evidence of rapid phage-mediated evolution. Although we found fewer virulence factors in Ma compared to M. tuberculosis, our data indicated that Ma evolves rapidly and therefore should be monitored closely for the acquisition of more pathogenic traits. This comparative study provides a better understanding of Ma and forms the basis for future functional work on this important pathogen.
  13. Ngeow YF, Leong ML, Wong YL, Wong GJ, Tan JL, Wee WY, et al.
    Genome Announc, 2013;1(4).
    PMID: 23990576 DOI: 10.1128/genomeA.00669-13
    Mycobacterium massiliense is a nontuberculous mycobacterium associated with human infections. We report here the draft genome sequence of M. massiliense strain M159, isolated from the bronchial aspirate of a patient who had a pulmonary infection. This strain showed genotypic and in vitro resistance to a number of tetracyclines and beta-lactam antibiotics.
  14. Choo SW, Wong YL, Beh CY, Lokanathan N, Leong ML, Ong CS, et al.
    Genome Announc, 2013 Jan;1(1).
    PMID: 23405341 DOI: 10.1128/genomeA.00063-12
    Mycobacterium abscessus is an emerging clinical pathogen commonly associated with non-tuberculous mycobacterial infections. We report herein the draft genome of M. abscessus strain M156.
  15. Zheng W, Tan TK, Paterson IC, Mutha NV, Siow CC, Tan SY, et al.
    PLoS One, 2016;11(5):e0151908.
    PMID: 27138013 DOI: 10.1371/journal.pone.0151908
    The oral streptococci are spherical Gram-positive bacteria categorized under the phylum Firmicutes which are among the most common causative agents of bacterial infective endocarditis (IE) and are also important agents in septicaemia in neutropenic patients. The Streptococcus mitis group is comprised of 13 species including some of the most common human oral colonizers such as S. mitis, S. oralis, S. sanguinis and S. gordonii as well as species such as S. tigurinus, S. oligofermentans and S. australis that have only recently been classified and are poorly understood at present. We present StreptoBase, which provides a specialized free resource focusing on the genomic analyses of oral species from the mitis group. It currently hosts 104 S. mitis group genomes including 27 novel mitis group strains that we sequenced using the high throughput Illumina HiSeq technology platform, and provides a comprehensive set of genome sequences for analyses, particularly comparative analyses and visualization of both cross-species and cross-strain characteristics of S. mitis group bacteria. StreptoBase incorporates sophisticated in-house designed bioinformatics web tools such as Pairwise Genome Comparison (PGC) tool and Pathogenomic Profiling Tool (PathoProT), which facilitate comparative pathogenomics analysis of Streptococcus strains. Examples are provided to demonstrate how StreptoBase can be employed to compare genome structure of different S. mitis group bacteria and putative virulence genes profile across multiple streptococcal strains. In conclusion, StreptoBase offers access to a range of streptococci genomic resources as well as analysis tools and will be an invaluable platform to accelerate research in streptococci. Database URL: http://streptococcus.um.edu.my.
  16. Mutha NVR, Mohammed WK, Krasnogor N, Tan GYA, Wee WY, Li Y, et al.
    Sci Rep, 2019 05 21;9(1):7664.
    PMID: 31113978 DOI: 10.1038/s41598-019-43979-w
    Many oral bacteria form macroscopic clumps known as coaggregates when mixed with a different species. It is thought that these cell-cell interactions are critical for the formation of mixed-species biofilms such as dental plaque. Here, we assessed the impact of coaggregation between two key initial colonizers of dental plaque, Streptococcus gordonii and Veillonella parvula, on gene expression in each partner. These species were shown to coaggregate in buffer or human saliva. To monitor gene regulation, coaggregates were formed in human saliva and, after 30 minutes, whole-transcriptomes were extracted for sequencing and Dual RNA-Seq analysis. In total, 272 genes were regulated in V. parvula, including 39 genes in oxidoreductase processes. In S. gordonii, there was a high degree of inter-sample variation. Nevertheless, 69 genes were identified as potentially regulated by coaggregation, including two phosphotransferase system transporters and several other genes involved in carbohydrate metabolism. Overall, these data indicate that responses of V. parvula to coaggregation with S. gordonii are dominated by oxidative stress-related processes, whereas S. gordonii responses are more focussed on carbohydrate metabolism. We hypothesize that these responses may reflect changes in the local microenvironment in biofilms when S. gordonii or V. parvula immigrate into the system.
  17. Tan KY, Deng S, Tan TK, Hari R, Sitam FT, Othman RY, et al.
    PeerJ, 2023;11:e16002.
    PMID: 37810781 DOI: 10.7717/peerj.16002
    BACKGROUND: The Malayan pangolin (Manis javanica) is a placental mammal and is listed as Critically Endangered on the IUCN Red List of Threatened Species. Most previous attempts to breed pangolins in captivity have met with little success because of dietary issues, infections, and other complications, although a previous study reported breeding pangolins in captivity to the third generation. In our previous pangolin genome sequencing data analysis, we obtained a considerable amount of bacterial DNA from a pregnant female Malayan pangolin (named "UM3"), which was likely infected by Paraburkholderia fungorum-an agent of biodegradation and bioremediation in agriculture.

    METHODOLOGY: Here, we further confirmed and characterized this bacterial species using PCR, histological staining, whole-genome sequencing, and bioinformatics approaches. PCR assays with in-house designed primer sets and 16S universal primers showed clear positive bands in the cerebrum, cerebellum, lung, and blood of UM3 suggesting that UM3 might have developed septicaemia. Histological staining showed the presence of Gram-negative rod-shaped bacteria in the pangolin brain and lungs, indicating the colonization of the bacteria in these two organs. In addition, PCR screening of UM3's fetal tissues revealed the presence of P. fungorum in the gastrocnemius muscle, but not in other tissues that we examined. We also sequenced and reconstructed the genome of pangolin P. fungorum, which has a genome size of 7.7 Mbps.

    CONCLUSION: Our study is the first to present detailed evidence of the presence of P. fungorum in a pangolin and her fetus (although preliminary results were presented in our previous article). Here, we raise the concern that P. fungorum may potentially infect humans, especially YOPI (young, old, pregnant, and immunocompromised) people. Therefore, caution should be exercised when using this bacterial species as biodegradation or bioremediation agents in agriculture.

  18. Tian X, Teo WFA, Wee WY, Yang Y, Ahmed H, Jakubovics NS, et al.
    BMC Genomics, 2023 Dec 04;24(1):734.
    PMID: 38049764 DOI: 10.1186/s12864-023-09831-2
    BACKGROUND: Actinomyces strains are commonly found as part of the normal microflora on human tissue surfaces, including the oropharynx, gastrointestinal tract, and female genital tract. Understanding the diversity and characterization of Actinomyces species is crucial for human health, as they play an important role in dental plaque formation and biofilm-related infections. Two Actinomyces strains ATCC 49340 T and ATCC 51655 T have been utilized in various studies, but their accurate species classification and description remain unresolved.

    RESULTS: To investigate the genomic properties and taxonomic status of these strains, we employed both 16S rRNA Sanger sequencing and whole-genome sequencing using the Illumina HiSeq X Ten platform with PE151 (paired-end) sequencing. Our analyses revealed that the draft genome of Actinomyces acetigenes ATCC 49340 T was 3.27 Mbp with a 68.0% GC content, and Actinomyces stomatis ATCC 51655 T has a genome size of 3.08 Mbp with a 68.1% GC content. Multi-locus (atpA, rpoB, pgi, metG, gltA, gyrA, and core genome SNPs) sequence analysis supported the phylogenetic placement of strains ATCC 51655 T and ATCC 49340 T as independent lineages. Digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI), and average amino acid identity (AAI) analyses indicated that both strains represented novel Actinomyces species, with values below the threshold for species demarcation (70% dDDH, 95% ANI and AAI). Pangenome analysis identified 5,731 gene clusters with strains ATCC 49340 T and ATCC 51655 T possessing 1,515 and 1,518 unique gene clusters, respectively. Additionally, genomic islands (GIs) prediction uncovered 24 putative GIs in strain ATCC 49340 T and 16 in strain ATCC 51655 T, contributing to their genetic diversity and potential adaptive capabilities. Pathogenicity analysis highlighted the potential human pathogenicity risk associated with both strains, with several virulence-associated factors identified. CRISPR-Cas analysis exposed the presence of CRISPR and Cas genes in both strains, indicating these strains might evolve a robust defense mechanism against them.

    CONCLUSION: This study supports the classification of strains ATCC 49340 T and ATCC 51655 T as novel species within the Actinomyces, in which the name Actinomyces acetigenes sp. nov. (type strain ATCC 49340 T = VPI D163E-3 T = CCUG 34286 T = CCUG 35339 T) and Actinomyces stomatis sp. nov. (type strain ATCC 51655 T = PK606T = CCUG 33930 T) are proposed.

  19. Choo SW, Mohammed WK, Mutha NVR, Rostami N, Ahmed H, Krasnogor N, et al.
    Appl Environ Microbiol, 2021 10 28;87(22):e0155821.
    PMID: 34469191 DOI: 10.1128/AEM.01558-21
    Cell-cell adhesion between oral bacteria plays a key role in the development of polymicrobial communities such as dental plaque. Oral streptococci such as Streptococcus gordonii and Streptococcus oralis are important early colonizers of dental plaque and bind to a wide range of different oral microorganisms, forming multispecies clumps or "coaggregates." S. gordonii actively responds to coaggregation by regulating gene expression. To further understand these responses, we assessed gene regulation in S. gordonii and S. oralis following coaggregation in 25% human saliva. Coaggregates were formed by mixing, and after 30 min, RNA was extracted for dual transcriptome sequencing (RNA-Seq) analysis. In S. oralis, 18 genes (6 upregulated and 12 downregulated) were regulated by coaggregation. Significantly downregulated genes encoded functions such as amino acid and antibiotic biosynthesis, ribosome, and central carbon metabolism. In total, 28 genes were differentially regulated in Streptococcus gordonii (25 upregulated and 3 downregulated). Many genes associated with transporters and a two-component (NisK/SpaK) regulatory system were upregulated following coaggregation. Our comparative analyses of S. gordonii-S. oralis with different previously published S. gordonii pairings (S. gordonii-Fusobacterium nucleatum and S. gordonii-Veillonella parvula) suggest that the gene regulation is specific to each pairing, and responses do not appear to be conserved. This ability to distinguish between neighboring bacteria may be important for S. gordonii to adapt appropriately during the development of complex biofilms such as dental plaque. IMPORTANCE Dental plaque is responsible for two of the most prevalent diseases in humans, dental caries and periodontitis. Controlling the formation of dental plaque and preventing the transition from oral health to disease requires a detailed understanding of microbial colonization and biofilm development. Streptococci are among the most common colonizers of dental plaque. This study identifies key genes that are regulated when oral streptococci bind to one another, as they do in the early stages of dental plaque formation. We show that specific genes are regulated in two different oral streptococci following the formation of mixed-species aggregates. The specific responses of S. gordonii to coaggregation with S. oralis are different from those to coaggregation with other oral bacteria. Targeting the key genes that are upregulated during interspecies interactions may be a powerful approach to control the development of biofilm and maintain oral health.
  20. Ngeow YF, Wong YL, Tan JL, Arumugam R, Wong GJ, Ong CS, et al.
    J Bacteriol, 2012 Aug;194(15):4125.
    PMID: 22815444 DOI: 10.1128/JB.00712-12
    Mycobacterium massiliense is a rapidly growing mycobacterial species. The pathogenicity of this subspecies is not well known. We report here the annotated genome sequence of M. massiliense strain M18, which was isolated from a lymph node biopsy specimen from a Malaysian patient suspected of having tuberculous cervical lymphadenitis.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links