Displaying publications 21 - 28 of 28 in total

Abstract:
Sort:
  1. Othman NA, Azhar MAAS, Damanhuri NS, Mahadi IA, Abbas MH, Shamsuddin SA, et al.
    Comput Methods Programs Biomed, 2023 Jun;236:107566.
    PMID: 37186981 DOI: 10.1016/j.cmpb.2023.107566
    BACKGROUND AND OBJECTIVE: The identification of insulinaemic pharmacokinetic parameters using the least-squares criterion approach is easily influenced by outlying data due to its sensitivity. Furthermore, the least-squares criterion has a tendency to overfit and produce incorrect results. Hence, this research proposes an alternative approach using the artificial neural network (ANN) with two hidden layers to optimize the identifying of insulinaemic pharmacokinetic parameters. The ANN is selected for its ability to avoid overfitting parameters and its faster speed in processing data.

    METHODS: 18 voluntarily participants were recruited from the Canterbury and Otago region of New Zealand to take part in a Dynamic Insulin Sensitivity and Secretion Test (DISST) clinical trial. A total of 46 DISST data were collected. However, due to ambiguous and inconsistency, 4 data had to be removed. Analysis was done using MATLAB 2020a.

    RESULTS AND DISCUSSION: Results show that, with 42 gathered dataset, the ANN generates higher gains, ∅P = 20.73 [12.21, 28.57] mU·L·mmol-1·min-1 and ∅D = 60.42 [26.85, 131.38] mU·L·mmol-1 as compared to the linear least square method, ∅P = 19.67 [11.81, 28.02] mU·L·mmol-1 ·min-1 and ∅D = 46.21 [7.25, 116.71] mU·L·mmol-1. The average value of the insulin sensitivity (SI) of ANN is lower with, SI = 16 × 10-4 L·mU-1 ·min-1 than the linear least square, SI = 17 × 10-4 L·mU-1 ·min-1.

    CONCLUSION: Although the ANN analysis provided a lower SI value, the results were more dependable than the linear least square model because the ANN approach yielded a better model fitting accuracy than the linear least square method with a lower residual error of less than 5%. With the implementation of this ANN architecture, it shows that ANN able to produce minimal error during optimization process particularly when dealing with outlying data. The findings may provide extra information to clinicians, allowing them to gain a better knowledge of the heterogenous aetiology of diabetes and therapeutic intervention options.

  2. Ang CYS, Chiew YS, Wang X, Ooi EH, Nor MBM, Cove ME, et al.
    Comput Methods Programs Biomed, 2023 Oct;240:107728.
    PMID: 37531693 DOI: 10.1016/j.cmpb.2023.107728
    BACKGROUND AND OBJECTIVE: Healthcare datasets are plagued by issues of data scarcity and class imbalance. Clinically validated virtual patient (VP) models can provide accurate in-silico representations of real patients and thus a means for synthetic data generation in hospital critical care settings. This research presents a realistic, time-varying mechanically ventilated respiratory failure VP profile synthesised using a stochastic model.

    METHODS: A stochastic model was developed using respiratory elastance (Ers) data from two clinical cohorts and averaged over 30-minute time intervals. The stochastic model was used to generate future Ers data based on current Ers values with added normally distributed random noise. Self-validation of the VPs was performed via Monte Carlo simulation and retrospective Ers profile fitting. A stochastic VP cohort of temporal Ers evolution was synthesised and then compared to an independent retrospective patient cohort data in a virtual trial across several measured patient responses, where similarity of profiles validates the realism of stochastic model generated VP profiles.

    RESULTS: A total of 120,000 3-hour VPs for pressure control (PC) and volume control (VC) ventilation modes are generated using stochastic simulation. Optimisation of the stochastic simulation process yields an ideal noise percentage of 5-10% and simulation iteration of 200,000 iterations, allowing the simulation of a realistic and diverse set of Ers profiles. Results of self-validation show the retrospective Ers profiles were able to be recreated accurately with a mean squared error of only 0.099 [0.009-0.790]% for the PC cohort and 0.051 [0.030-0.126]% for the VC cohort. A virtual trial demonstrates the ability of the stochastic VP cohort to capture Ers trends within and beyond the retrospective patient cohort providing cohort-level validation.

    CONCLUSION: VPs capable of temporal evolution demonstrate feasibility for use in designing, developing, and optimising bedside MV guidance protocols through in-silico simulation and validation. Overall, the temporal VPs developed using stochastic simulation alleviate the need for lengthy, resource intensive, high cost clinical trials, while facilitating statistically robust virtual trials, ultimately leading to improved patient care and outcomes in mechanical ventilation.

  3. Ang CYS, Chiew YS, Wang X, Ooi EH, Cove ME, Chen Y, et al.
    Comput Methods Programs Biomed, 2024 Jul 11;255:108323.
    PMID: 39029417 DOI: 10.1016/j.cmpb.2024.108323
    BACKGROUND AND OBJECTIVE: Patient-ventilator asynchrony (PVA) is associated with poor clinical outcomes and remains under-monitored. Automated PVA detection would enable complete monitoring standard observational methods do not allow. While model-based and machine learning PVA approaches exist, they have variable performance and can miss specific PVA events. This study compares a model and rule-based algorithm with a machine learning PVA method by retrospectively validating both methods using an independent patient cohort.

    METHODS: Hysteresis loop analysis (HLA) which is a rule-based method (RBM) and a tri-input convolutional neural network (TCNN) machine learning model are used to classify 7 different types of PVA, including: 1) flow asynchrony; 2) reverse triggering; 3) premature cycling; 4) double triggering; 5) delayed cycling; 6) ineffective efforts; and 7) auto triggering. Class activation mapping (CAM) heatmaps visualise sections of respiratory waveforms the TCNN model uses for decision making, improving result interpretability. Both PVA classification methods were used to classify incidence in an independent retrospective clinical cohort of 11 mechanically ventilated patients for validation and performance comparison.

    RESULTS: Self-validation with the training dataset shows overall better HLA performance (accuracy, sensitivity, specificity: 97.5 %, 96.6 %, 98.1 %) compared to the TCNN model (accuracy, sensitivity, specificity: 89.5 %, 98.3 %, 83.9 %). In this study, the TCNN model demonstrates higher sensitivity in detecting PVA, but HLA was better at identifying non-PVA breathing cycles due to its rule-based nature. While the overall AI identified by both classification methods are very similar, the intra-patient distribution of each PVA type varies between HLA and TCNN.

    CONCLUSION: The collective findings underscore the efficacy of both HLA and TCNN in PVA detection, indicating the potential for real-time continuous monitoring of PVA. While ML methods such as TCNN demonstrate good PVA identification performance, it is essential to ensure optimal model architecture and diversity in training data before widespread uptake as standard care. Moving forward, further validation and adoption of RBM methods, such as HLA, offers an effective approach to PVA detection while providing clear distinction into the underlying patterns of PVA, better aligning with clinical needs for transparency, explicability, adaptability and reliability of these emerging tools for clinical care.

  4. Lee JWW, Chiew YS, Wang X, Tan CP, Mat Nor MB, Damanhuri NS, et al.
    Ann Biomed Eng, 2021 Dec;49(12):3280-3295.
    PMID: 34435276 DOI: 10.1007/s10439-021-02854-4
    While lung protective mechanical ventilation (MV) guidelines have been developed to avoid ventilator-induced lung injury (VILI), a one-size-fits-all approach cannot benefit every individual patient. Hence, there is significant need for the ability to provide patient-specific MV settings to ensure safety, and optimise patient care. Model-based approaches enable patient-specific care by identifying time-varying patient-specific parameters, such as respiratory elastance, Ers, to capture inter- and intra-patient variability. However, patient-specific parameters evolve with time, as a function of disease progression and patient condition, making predicting their future values crucial for recommending patient-specific MV settings. This study employs stochastic modelling to predict future Ers values using retrospective patient data to develop and validate a model indicating future intra-patient variability of Ers. Cross validation results show stochastic modelling can predict future elastance ranges with 92.59 and 68.56% of predicted values within the 5-95% and the 25-75% range, respectively. This range can be used to ensure patients receive adequate minute ventilation should elastance rise and minimise the risk of VILI should elastance fall. The results show the potential for model-based protocols using stochastic model prediction of future Ers values to provide safe and patient-specific MV. These results warrant further investigation to validate its clinical utility.
  5. Abu-Samah A, Knopp JL, Abdul Razak NN, Razak AA, Jamaludin UK, Mohamad Suhaimi F, et al.
    Med Devices (Auckl), 2019;12:215-226.
    PMID: 31239792 DOI: 10.2147/MDER.S187840
    Background: Stress-induced hyperglycemia is common in critically ill patients. A few forms of model-based glycemic control have been introduced to reduce this phenomena and among them is the automated STAR protocol which has been used in the Christchurch and Gyulá hospitals' intensive care units (ICUs) since 2010. Methods: This article presents the pilot trial assessment of STAR protocol which has been implemented in the International Islamic University Malaysia Medical Centre (IIUMMC) Hospital ICU since December 2017. One hundred and forty-two patients who received STAR treatment for more than 20 hours were used in the assessment. The initial results are presented to discuss the ability to adopt and adapt the model-based control framework in a Malaysian environment by analyzing its performance and safety. Results: Overall, 60.7% of blood glucose measurements were in the target band. Only 0.78% and 0.02% of cohort measurements were below 4.0 mmol/L and 2.2 mmol/L (the limitsfor mild and severe hypoglycemia, respectively). Treatment preference-wise, the clinical staff were favorable of longer intervention options when available. However, 1 hourly treatments were still used in 73.7% of cases. Conclusion: The protocol succeeded in achieving patient-specific glycemic control while maintaining safety and was trusted by nurses to reduce workload. Its lower performance results, however, give the indication for modification in some of the control settings to better fit the Malaysian environment.
  6. Abdul Razak A, Abu-Samah A, Abdul Razak NN, Jamaludin U, Suhaimi F, Ralib A, et al.
    Med Devices (Auckl), 2020;13:139-149.
    PMID: 32607009 DOI: 10.2147/MDER.S231856
    Purpose: This paper presents an assessment of an automated and personalized stochastic targeted (STAR) glycemic control protocol compliance in Malaysian intensive care unit (ICU) patients to ensure an optimized usage.

    Patients and Methods: STAR proposes 1-3 hours treatment based on individual insulin sensitivity variation and history of blood glucose, insulin, and nutrition. A total of 136 patients recorded data from STAR pilot trial in Malaysia (2017-quarter of 2019*) were used in the study to identify the gap between chosen administered insulin and nutrition intervention as recommended by STAR, and the real intervention performed.

    Results: The results show the percentage of insulin compliance increased from 2017 to first quarter of 2019* and fluctuated in feed administrations. Overall compliance amounted to 98.8% and 97.7% for administered insulin and feed, respectively. There was higher average of 17 blood glucose measurements per day than in other centres that have been using STAR, but longer intervals were selected when recommended. Control safety and performance were similar for all periods showing no obvious correlation to compliance.

    Conclusion: The results indicate that STAR, an automated model-based protocol is positively accepted among the Malaysian ICU clinicians to automate glycemic control and the usage can be extended to other hospitals already. Performance could be improved with several propositions.

  7. Kim KT, Morton S, Howe S, Chiew YS, Knopp JL, Docherty P, et al.
    Trials, 2020 Feb 01;21(1):130.
    PMID: 32007099 DOI: 10.1186/s13063-019-4035-7
    BACKGROUND: Positive end-expiratory pressure (PEEP) at minimum respiratory elastance during mechanical ventilation (MV) in patients with acute respiratory distress syndrome (ARDS) may improve patient care and outcome. The Clinical utilisation of respiratory elastance (CURE) trial is a two-arm, randomised controlled trial (RCT) investigating the performance of PEEP selected at an objective, model-based minimal respiratory system elastance in patients with ARDS.

    METHODS AND DESIGN: The CURE RCT compares two groups of patients requiring invasive MV with a partial pressure of arterial oxygen/fraction of inspired oxygen (PaO2/FiO2) ratio ≤ 200; one criterion of the Berlin consensus definition of moderate (≤ 200) or severe (≤ 100) ARDS. All patients are ventilated using pressure controlled (bi-level) ventilation with tidal volume = 6-8 ml/kg. Patients randomised to the control group will have PEEP selected per standard practice (SPV). Patients randomised to the intervention will have PEEP selected based on a minimal elastance using a model-based computerised method. The CURE RCT is a single-centre trial in the intensive care unit (ICU) of Christchurch hospital, New Zealand, with a target sample size of 320 patients over a maximum of 3 years. The primary outcome is the area under the curve (AUC) ratio of arterial blood oxygenation to the fraction of inspired oxygen over time. Secondary outcomes include length of time of MV, ventilator-free days (VFD) up to 28 days, ICU and hospital length of stay, AUC of oxygen saturation (SpO2)/FiO2 during MV, number of desaturation events (SpO2 

  8. Chase JG, Preiser JC, Dickson JL, Pironet A, Chiew YS, Pretty CG, et al.
    Biomed Eng Online, 2018 Feb 20;17(1):24.
    PMID: 29463246 DOI: 10.1186/s12938-018-0455-y
    Critical care, like many healthcare areas, is under a dual assault from significantly increasing demographic and economic pressures. Intensive care unit (ICU) patients are highly variable in response to treatment, and increasingly aging populations mean ICUs are under increasing demand and their cohorts are increasingly ill. Equally, patient expectations are growing, while the economic ability to deliver care to all is declining. Better, more productive care is thus the big challenge. One means to that end is personalised care designed to manage the significant inter- and intra-patient variability that makes the ICU patient difficult. Thus, moving from current "one size fits all" protocolised care to adaptive, model-based "one method fits all" personalised care could deliver the required step change in the quality, and simultaneously the productivity and cost, of care. Computer models of human physiology are a unique tool to personalise care, as they can couple clinical data with mathematical methods to create subject-specific models and virtual patients to design new, personalised and more optimal protocols, as well as to guide care in real-time. They rely on identifying time varying patient-specific parameters in the model that capture inter- and intra-patient variability, the difference between patients and the evolution of patient condition. Properly validated, virtual patients represent the real patients, and can be used in silico to test different protocols or interventions, or in real-time to guide care. Hence, the underlying models and methods create the foundation for next generation care, as well as a tool for safely and rapidly developing personalised treatment protocols over large virtual cohorts using virtual trials. This review examines the models and methods used to create virtual patients. Specifically, it presents the models types and structures used and the data required. It then covers how to validate the resulting virtual patients and trials, and how these virtual trials can help design and optimise clinical trial. Links between these models and higher order, more complex physiome models are also discussed. In each section, it explores the progress reported up to date, especially on core ICU therapies in glycemic, circulatory and mechanical ventilation management, where high cost and frequency of occurrence provide a significant opportunity for model-based methods to have measurable clinical and economic impact. The outcomes are readily generalised to other areas of medical care.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links