This study aimed to evaluate the impacts of morphological-controlled ZnO nanoarchitectures on aerobic microbial communities during real wastewater treatment in an aerobic-photocatalytic system. Results showed that the antibacterial properties of ZnO nanoarchitectures were significantly more overwhelming than their photocatalytic properties. The inhibition of microbial activities in activated sludge by ZnO nanoarchitectures entailed an adverse effect on wastewater treatment efficiency. Subsequently, the 16S sequencing analysis were conducted to examine the impacts of ZnO nanoarchitectures on aerobic microbial communities, and found the significantly lower microbial diversity and species richness in activated sludge treated with 1D-ZnO nanorods as compared to other ZnO nanoarchitectures. Additionally, 1D-ZnO nanorods reduced the highest proportion of Proteobacteria phylum in activated sludge due to its higher proportion of active polar surfaces that facilitates Zn2+ ions dissolution. Pearson correlation coefficients showed that the experimental data obtained from COD removal efficiency and bacterial log reduction were statistically significant (p-value
Microalgae are considered promising feedstock for the production of biofuels and other bioactive compounds, yet there are still challenges on commercial applications of microalgae-based products. This review focuses on the economic analysis, environmental impact, and industrial potential of biofuels production from microalgae. The cost of biofuels production remains higher compared to conventional fuel sources. However, integration of biorefinery pathways with biofuels production for the recovery of value-added products (such as antioxidants, natural dyes, cosmetics, nutritional supplements, polyunsaturated fatty acids, and so forth) could substantially reduce the production costs. It also paves the way for sustainable energy resources by significantly reducing the emissions of CO2 , NOx , SOx , and heavy metals. Large-scale biofuels production has yet to be successfully commercialized with many roadblocks ahead and heavy competition with conventional fuel feedstock as well as technological aspects. One of the prominent challenges is to develop a cost-effective method to achieve high-density microalgal cultivation on an industrial scale. The biofuels industry should be boosted by Government's support in the form of subsidies and incentives, for addressing the pressing climate change issues, achieving sustainability, and energy security.
Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.
Microalgae biomass contains various useful bio-active components. Microalgae derived biodiesel has been researched for almost two decades. However, sole biodiesel extraction from microalgae is time-consuming and is not economically feasible due to competitive fossil fuel prices. Microalgae also contains proteins and carbohydrates in abundance. Microalgae are likewise utilized to extract high-value products such as pigments, anti-oxidants and long-chain polyunsaturated fatty acids which are useful in cosmetic, pharmaceutical and nutraceutical industry. These compounds can be extracted simultaneously or sequentially after biodiesel extraction to reduce the total expenditure involved in the process. This approach of bio-refinery is necessary to promote microalgae in the commercial market. Researchers have been keen on utilizing the bio-refinery approach to exploit the valuable components encased by microalgae. Apart from all the beneficial components housed by microalgae, they also help in reducing the anthropogenic CO2 levels of the atmosphere while utilizing saline or wastewater. These benefits enable microalgae as a potential source for bio-refinery approach. Although life-cycle analysis and economic assessment do not favor the use of microalgae biomass feedstock to produce biofuel and co-products with the existing techniques, this review still aims to highlight the beneficial components of microalgae and their importance to humans. In addition, this article also focuses on current and future aspects of improving the feasibility of bio-processing for microalgae bio-refinery.
Seaweeds are photosynthetic marine macroalgae known for their rapid biomass growth and their significant contributions to global food and feed production. Seaweeds play a crucial role in mitigating various environmental issues, including greenhouse gases, ocean acidification, hypoxia, and eutrophication. Tropical seaweeds are typically found in tropical and subtropical coastal zones with warmer water temperatures and abundant sunlight. These tropical seaweeds are rich sources of proteins, vitamins, minerals, fibers, polysaccharides, and bioactive compounds, contributing to their health-promoting properties and their diverse applications across a range of industries. The productivity, cultivability, nutritional quality, and edibility of tropical seaweeds have been well-documented. This review article begins with an introduction to the growth conditions of selected tropical seaweeds. Subsequently, the multifunctional properties of tropical seaweeds including antioxidant and anti-inflammatory, anti-coagulant, anti-carcinogenic and anti-proliferative, anti-viral, therapeutic and preventive properties were comprehensively evaluated. The potential application of tropical seaweeds as functional foods and feeds, as well as their contributions to sustainable cosmetics, bioenergy, and biofertilizer production were also highlighted. This review serves as a valuable resource for researchers involved in seaweed farming as it provides current knowledge and insights into the cultivation and utilization of seaweeds.
Heavy metal pollution is one of the most pervasive environmental problems globally. Novel finely tuned algae have been proposed as a means to improve the efficacy and selectivity of heavy metal biosorption. This article reviews current research on selective algal heavy metal adsorption and critically discusses the performance of novel biosorbents. We emphasize emerging state-of-the-art techniques that customize algae for enhanced performance and selectivity, particularly molecular and chemical extraction techniques as well as nanoparticle (NP) synthesis approaches. The mechanisms and processes for developing novel algal biosorbents are also presented. Finally, we discuss the applications, challenges, and future prospects for modified algae in heavy metal biosorption.
Microalgae emerge as the most promising protein sources for aquaculture industry. However, the commercial proteins production at low cost remains a challenge. The process of harnessing microalgal proteins involves several steps such as cell disruption, isolation and extraction. The discrete processes are generally complicated, time-consuming and costly. To date, the notion of integrating microalgal cell disruption and proteins recovery process into one step is yet to explore. Hence, this study aimed to investigate the feasibility of applying methanol/potassium ATPS in the integrated process for proteins recovery from Chlorella sorokiniana. Parameters such as salt types, salt concentrations, methanol concentrations, NaCl addition were optimized. The possibility of upscaling and the effectiveness of recycling the phase components were also studied. The results showed that ATPS formed by 30% (w/w) K3PO4 and 20% (w/w) methanol with 3% (w/w) NaCl addition was optimum for proteins recovery. In this system, the partition coefficient and yield were 7.28 and 84.23%, respectively. There were no significant differences in the partition coefficient and yield when the integrated process was upscaled to 100-fold. The recovered phase components can still be recycled effectively at fifth cycle. In conclusions, this method is simple, rapid, environmental friendly and could be implemented at large scale.
Fruit and vegetable wastes are linked to the depletion of natural resources and can pose serious health and environmental risks (e.g. eutrophication, water and soil pollution, and GHG emissions) if improperly managed. Current waste management practices often fail to recover high-value compounds from fruit wastes. Among emerging valorization methods, the utilization of fruit wastes as a feedstock for microalgal biorefineries is a promising approach for achieving net zero waste and sustainable development goals. This is due to the ability of microalgae to efficiently sequester carbon dioxide through photosynthesis, utilize nutrients in wastewater, grow in facilities located on non-arable land, and produce several commercially valuable compounds with applications in food, biofuels, bioplastics, cosmetics, nutraceuticals, pharmaceutics, and various other industries. However, the application of microalgal biotechnology towards upcycling fruit wastes has yet to be implemented on the industrial scale due to several economic, technical, operational, and regulatory challenges. Here, we identify sources of fruit waste along the food supply chain, evaluate current and emerging fruit waste management practices, describe value-added compounds in fruit wastes, and review current methods of microalgal cultivation using fruit wastes as a fermentation medium. We also propose some novel strategies for the practical implementation of industrial microalgal biorefineries for upcycling fruit waste in the future.
Using bone char for contaminated wastewater treatment and soil remediation is an intriguing approach to environmental management and an environmentally friendly way of recycling waste. The bone char remediation strategy for heavy metal-polluted wastewater was primarily affected by bone char characteristics, factors of solution, and heavy metal (HM) chemistry. Therefore, the optimal parameters of HM sorption by bone char depend on the research being performed. Regarding enhancing HM immobilization by bone char, a generic strategy for determining optimal parameters and predicting outcomes is crucial. The primary objective of this research was to employ artificial neural network (ANN) technology to determine the optimal parameters via sensitivity analysis and to predict objective function through simulation. Sensitivity analysis found that for multi-metals sorption (Cd, Ni, and Zn), the order of significance for pyrolysis parameters was reaction temperature > heating rate > residence time. The primary variables for single metal sorption were solution pH, HM concentration, and pyrolysis temperature. Regarding binary sorption, the incubation parameters were evaluated in the following order: HM concentrations > solution pH > bone char mass > incubation duration. This approach can be used for further experiment design and improve the immobilization of HM by bone char for water remediation.
Fish meal is currently the major protein source for commercial aquaculture feed. Due to its unstable supply and increasing price, fish meal is becoming more expensive and its availability is expected to face significant challenges in the near future. Therefore, feasible alternatives to fish meal are urgently required. Microalgae have been recognized as the most promising candidates to replace fish meal because the protein composition of microalgae is similar to fish meal and the supply of microalgae-based proteins is sustainable. In this study, an indigenous microalga (Chlorella vulgaris FSP-E) with high protein content was selected, and its feasibility as an aquaculture protein source was explored. An innovative photobioreactor (PBR) utilizing cold cathode fluorescent lamps as an internal light source was designed to cultivate the FSP-E strain for protein production. This PBR could achieve a maximum biomass and protein productivity of 699 and 365 mg/L/day, respectively, under an optimum urea and iron concentration of 12.4 mM and 90 μM, respectively. In addition, amino acid analysis of the microalgal protein showed that up to 70% of the proteins in this microalgal strain consist of indispensable amino acids. Thus, C. vulgaris FSP-E appears to be a viable alternative protein source for the aquaculture industry.
Global issues such as environmental problems and food security are currently of concern to all of us. Circular bioeconomy is a promising approach towards resolving these global issues. The production of bioenergy and biomaterials can sustain the energy-environment nexus as well as substitute the devoid of petroleum as the production feedstock, thereby contributing to a cleaner and low carbon environment. In addition, assimilation of waste into bioprocesses for the production of useful products and metabolites lead towards a sustainable circular bioeconomy. This review aims to highlight the waste biorefinery as a sustainable bio-based circular economy, and, therefore, promoting a greener environment. Several case studies on the bioprocesses utilising waste for biopolymers and bio-lipids production as well as bioprocesses incorporated with wastewater treatment are well discussed. The strategy of waste biorefinery integrated with circular bioeconomy in the perspectives of unravelling the global issues can help to tackle carbon management and greenhouse gas emissions. A waste biorefinery-circular bioeconomy strategy represents a low carbon economy by reducing greenhouse gases footprint, and holds great prospects for a sustainable and greener world.
Antibiotics and pharmaceuticals related products are used to enhance public health and quality of life. The wastewater that is produced from pharmaceutical industries still contains noticeable amount of antibiotics, and this has remained one of the major environmental problems facing public health. The conventional wastewater remediation approach employed by the pharmaceutical industries for the antibiotics wastewater removal is unable to remove the antibiotics completely. Besides, municipal and livestock wastewater also contain unmetabolized antibiotics released by human and animal, respectively. The antibiotic found in wastewater leads to antibiotic resistance challenges, also emergence of superbugs. Currently, numerous technological approaches have been developed to remove antibiotics from the wastewater. Therefore, it was imperative to critically review the weakness and strength of these current advanced technological approaches in use. Besides, the conventional methods for removal of antibiotics such as Klavaroti et al., Homem and Santos also discussed. Although, membrane treatment is discovered as the ultimate choice of approach, to completely remove the antibiotics, while the filtered antibiotics are still retained on the membrane. This study found, hybrid processes to be the best solution antibiotics removal from wastewater. Nevertheless, real-time monitoring system is also recommended to ascertain that, wastewater is cleared of antibiotics.
Recent trend to recover value-added products from wastewater calls for more effective pre-treatment technology. Conventional landfill leachate treatment is often complex and thus causes negative environmental impacts and financial burden. In order to facilitate downstream processing of leachate wastewater for production of energy or value-added products, it is pertinent to maximize leachate treatment performance by using simple yet effective technology that removes pollutants with minimum chemical added into the wastewater that could potentially affect downstream processing. Hence, the optimization of coagulation-flocculation leachate treatment using multivariate approach is crucial. Central composite design was applied to optimize operating parameters viz. Alum dosage, pH and mixing speed. Quadratic model indicated that the optimum COD removal of 54% is achieved with low alum dosage, pH and mixing speed of 750 mgL-1, 8.5 and 100 rpm, respectively. Optimization result showed that natural pH of the mature landfill leachate sample is optimum for alum coagulation process. Hence, the cost of pH adjustment could be reduced for industrial application by adopting optimized parameters. The inherent mechanism of pollutant removal was elucidated by FTIR peaks at 3853 cm-1 which indicated that hydrogen bonds play a major role in leachate removal by forming well aggregated flocs. This is concordance with SEM image that the floc was well aggregated with the porous linkages and amorphous surface structure. The optimization of leachate treatment has been achieved by minimizing the usage of alum under optimized condition.
In this study, process optimization for the microalgae-based piggery wastewater treatment was carried out by growing Chlorella sorokiniana AK-1 on untreated piggery wastewater with efficient COD/BOD/TN/TP removal and high biomass/protein productivities. Integration of the immobilization carriers (sponge, activated carbon) and semi-batch cultivation resulted in the effective treatment of raw untreated piggery wastewater. With 100% wastewater, 0.2% sponge and 2% activated carbon, the semi-batch cultivation (90% media replacement every 6 days) exhibited a COD, BOD, TN and TP removal efficiency of 95.7%, 99.0%, 94.1% and 96.9%, respectively. The maximal protein content, protein productivity, lutein content, and lutein productivity of the obtained microalgal biomass was 61.1%, 0.48 g/L/d, 4.56 mg/g, and 3.56 mg/L/d, respectively. The characteristics of the treated effluent satisfied Taiwan Piggery Wastewater Discharge Standards (COD
Microalgae biorefinery is a platform for the conversion of microalgal biomass into a variety of value-added products, such as biofuels, bio-based chemicals, biomaterials, and bioactive substances. Commercialization and industrialization of microalgae biorefinery heavily rely on the capability and efficiency of large-scale cultivation of microalgae. Thus, there is an urgent need for novel technologies that can be used to monitor, automatically control, and precisely predict microalgae production. In light of this, innovative applications of the Internet of things (IoT) technologies in microalgae biorefinery have attracted tremendous research efforts. IoT has potential applications in a microalgae biorefinery for the automatic control of microalgae cultivation, monitoring and manipulation of microalgal cultivation parameters, optimization of microalgae productivity, identification of toxic algae species, screening of target microalgae species, classification of microalgae species, and viability detection of microalgal cells. In this critical review, cutting-edge IoT technologies that could be adopted to microalgae biorefinery in the upstream and downstream processing are described comprehensively. The current advances of the integration of IoT with microalgae biorefinery are presented. What this review discussed includes automation, sensors, lab-on-chip, and machine learning, which are the main constituent elements and advanced technologies of IoT. Specifically, future research directions are discussed with special emphasis on the development of sensors, the application of microfluidic technology, robotized microalgae, high-throughput platforms, deep learning, and other innovative techniques. This review could contribute greatly to the novelty and relevance in the field of IoT-based microalgae biorefinery to develop smarter, safer, cleaner, greener, and economically efficient techniques for exhaustive energy recovery during the biorefinery process.
Microalgae have received much interest as a biofuel feedstock in response to the uprising energy crisis, climate change and depletion of natural sources. Development of microalgal biofuels from microalgae does not satisfy the economic feasibility of overwhelming capital investments and operations. Hence, high-value co-products have been produced through the extraction of a fraction of algae to improve the economics of a microalgae biorefinery. Examples of these high-value products are pigments, proteins, lipids, carbohydrates, vitamins and anti-oxidants, with applications in cosmetics, nutritional and pharmaceuticals industries. To promote the sustainability of this process, an innovative microalgae biorefinery structure is implemented through the production of multiple products in the form of high value products and biofuel. This review presents the current challenges in the extraction of high value products from microalgae and its integration in the biorefinery. The economic potential assessment of microalgae biorefinery was evaluated to highlight the feasibility of the process.
Microalgae biorefinery is presently receiving a lot of attention as driven by its production of high value-added products. In this study, an oleaginous microalga Aurantiochytrium limacinum SR21 was cultured for docosahexaenoic acid (DHA) production using 20% (w/v) of K2HPO4-waste feedstock to replace 0.005% (w/v) of KH2PO4 in the flask culture. DHA is an essential nutrient for human's brain functionalities. Collectively, the K2HPO4-waste feedstock with working concentration of 0.005% (w/v) in the cultivation prompted a higher lipid content (8.29%) and DHA production (128.81 mg.L-1). Moreover, natural plant pigment products containing stabilised betacyanins were utilised as natural red colourants for hard candy production. This study develops microalgal cultivation using salt-rich waste feedstock for a higher lipid and DHA content as well as application of natural colouring agents in food products.
Polyhydroxyalkanoates (PHAs), a family of biodegradable and renewable biopolymers show a huge potential as an alternative to conventional plastics. Extractive bioconversion (in situ product recovery) is a technique that integrates upstream fermentation and downstream purification. In this study, extractive bioconversion of PHAs from Cupriavidus necator H16 was performed via a thermo-separating aqueous two-phase system to reduce the cost and environmental impacts of PHAs production. Key operating parameters, such as polymer concentration, temperature, and pH, were optimized. The strategy achieved a yield and PF of 97.6% and 1.36-fold, respectively at 5% EOPO 3900 concentration, 30 °C fermentation temperature and pH 6. The PHAs production process was also successfully scaled up in a 2 L bioreactor. To the best of our knowledge, this is the first report on extractive fermentation of PHAs from Cupriavidus necator utilizing a thermo-separation system to achieve a better productivity and purity of the target product.
The thermal characteristics of Actinobacillus succinogenes (AS) from pyrolysis, torrefaction, and combustion are analyzed to evaluate the potential of this biomass as a renewable fuel. AS pyrolysis can be classified into four stages, and its main decomposition zone is at 200-500 °C. The solid yield of AS after 60 min torrefaction is over 60 wt%, and the torrefaction severity index map indicates that a high torrefaction temperature with a short duration has a more profound influence on its decomposition. The Py-GC/MS analysis of AS suggests that the volatile products from 500 °C pyrolysis are similar to microalgae-derived pyrolysis bio-oils. The combustibility index (S) of AS is 4.07 × 10-7 which is much higher than that of lignite coal (0.39 × 10-7) and bituminous coal (0.18 × 10-7), and close to those of biochar and bio-oil. The obtained results are conducive to the development of microorganisms as fuel to achieve a circular bioeconomy.
Pretreatment of microalgal biomass possessing rigid cell wall is a critical step for enhancing the efficiency of microalgal biorefinery. However, the conventional pretreatment processes suffer the drawbacks of complex processing steps, long processing time, low conversion efficiency and high processing costs. This significantly hinders the industrial applicability of microalgal biorefinery. The innovative electricity-aid pretreatment techniques serve as a promising processing tool to extensively enhance the release of intracellular substances from microalgae. In this review, application of electric field-based techniques and recent advances of using electrical pretreatments on microalgae cell focusing on pulsed electric field, electrolysis, high voltage electrical discharges and moderate electric field are reviewed. In addition, the emerging techniques integrating electrolysis with liquid biphasic flotation process as promising downstream approach is discussed. This review delivers broad knowledge of the present significance of the application of these methods focusing on the development of electric assisted biomolecules extraction from microalgae.