Displaying publications 21 - 40 of 41 in total

Abstract:
Sort:
  1. Zainuddin NH, Chee HY, Ahmad MZ, Mahdi MA, Abu Bakar MH, Yaacob MH
    J Biophotonics, 2018 08;11(8):e201700363.
    PMID: 29570957 DOI: 10.1002/jbio.201700363
    This paper presents the development of tapered optical fiber sensor to detect a specific Leptospira bacteria DNA. The bacteria causes Leptospirosis, a deadly disease but with common early flu-like symptoms. Optical single mode fiber (SMF) of 125 μm diameter is tapered to produce 12 μm waist diameter and 15 cm length. The novel DNA-based optical fiber sensor is functionalized by incubating the tapered region with sodium hydroxide (NaOH), (3-Aminopropyl) triethoxysilane and glutaraldehyde. Probe DNA is immobilized onto the tapered region and subsequently hybridized by its complementary DNA (cDNA). The transmission spectra of the DNA-based optical fiber sensor are measured in the 1500 to 1600 nm wavelength range. It is discovered that the shift of the wavelength in the SMF sensor is linearly proportional with the increase in the cDNA concentrations from 0.1 to 1.0 nM. The sensitivity of the sensor toward DNA is measured to be 1.2862 nm/nM and able to detect as low as 0.1 fM. The sensor indicates high specificity when only minimal shift is detected for non-cDNA testing. The developed sensor is able to distinguish between actual DNA of Leptospira serovars (Canicola and Copenhageni) against Clostridium difficile (control sample) at very low (femtomolar) target concentrations.
  2. Sulaiman R, Azeman NH, Abu Bakar MH, Ahmad Nazri NA, Masran AS, Ashrif A Bakar A
    Appl Spectrosc, 2023 Feb;77(2):210-219.
    PMID: 36348500 DOI: 10.1177/00037028221140924
    Nutrient solution plays an essential role in providing macronutrients to hydroponic plants. Determining nitrogen in the form of nitrate is crucial, as either a deficient or excessive supply of nitrate ions may reduce the plant yield or lead to environmental pollution. This work aims to evaluate the performance of feature reduction techniques and conventional machine learning (ML) algorithms in determining nitrate concentration levels. Two features reduction techniques, linear discriminant analysis (LDA) and principal component analysis (PCA), and seven ML algorithms, for example, k-nearest neighbors (KNN), support vector machine, decision trees, naïve bayes, random forest (RF), gradient boosting, and extreme gradient boosting, were evaluated using a high-dimensional spectroscopic dataset containing measured nitrate-nitrite mixed solution absorbance data. Despite the limited and uneven number of samples per class, this study demonstrated that PCA outperformed LDA on the high-dimensional spectroscopic dataset. The classification accuracy of ML algorithms combined with PCA ranged from 92.7% to 99.8%, whereas the classification accuracy of ML algorithms combined with LDA ranged from 80.7% to 87.6%. The PCA with the RF algorithm exhibited the best performance with 99.8% accuracy.
  3. Sulaiman R, Azeman NH, Mokhtar MHH, Mobarak NN, Abu Bakar MH, Bakar AAA
    PMID: 37708761 DOI: 10.1016/j.saa.2023.123327
    Accurate, label-free, and rapid methods for measuring phosphorus concentrations are essential in a hydroponic system, as excessive or insufficient phosphorus levels can adversely affect plant growth, human health, and environmental sustainability. In this study, we demonstrate the advantages of hybrid machine learning models compared to single machine learning models in predicting phosphorus concentration based on the absorbance dataset. Three machine learning classifiers- Random Forest (RF), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN)- were employed as bases for single and hybrid machine learning models. Three ensemble techniques (voting, bagging, and stacking) were used to hybridize the classifiers. Among the single models, KNN demonstrated the fastest computational time of 18.07 s, while SVM achieved the highest accuracy of 99.6%. The hybrid SVM/KNN model using a voting classifier showed a significant increase in accuracy for KNN with only a slight increase in computational time. Bagging techniques increased the accuracy but at a longer computational time. The stacking technique, which combined SVM, KNN, and RF, achieved the highest accuracy of 99.73% with a short computational time of 36.18 s compared to the bagging and voting technique. This study demonstrates that the machine learning method can effectively distinguish phosphorus concentrations. In contrast, hybrid machine learning techniques can improve accuracy for predicting phosphorus without using labels, despite requiring longer computational time.
  4. Firouz NS, Karunakaran T, Mokhtar N, Santhanam R, Jong VYM, Abu Bakar MH
    Nat Prod Res, 2024 Jan 22.
    PMID: 38247357 DOI: 10.1080/14786419.2024.2305222
    Bioactive phenolics can be found in abundance in Calophyllum species. Phytochemical studies are carried out on the stem bark of Calophyllum recurvatum and Calophyllum andersonii, which has led to the isolation and elucidation of phytochemicals, thwaitesixanthone (1), teysmanone A (2), soulattrolide (3), calanone (4), isocalanone (5) and friedelin (6), respectively. The cytotoxic activities of compounds (2), (3), (4) and (5) as well as plant extracts were tested against HeLa Chang liver, HepG2 and HL-7702 cell lines. Phenylpyranocoumarins, teysmanone A (2) and soulattrolide (3) portrayed appreciable cytotoxicity activities at 42.57 ± 1.20 and 34.53 ± 3.41 µg/mL, respectively against HepG2 cell line comparable to the positive control, curcumin. Meanwhile, n-hexane extract from C. recurvatum exhibited cytotoxicity with the IC50 value of 36.43 ± 0.64 and 26.25 ± 4.83 µg/mL against HeLa Chang liver and HepG2 cell lines. All the tested compounds and plant extracts displayed non-cytotoxic properties on HL-7702 cell line.
  5. Mokhtar N, Karunakaran T, Santhanam R, Abu Bakar MH, Jong VYM
    Nat Prod Res, 2024;38(5):873-878.
    PMID: 37005001 DOI: 10.1080/14786419.2023.2196075
    Genus Calophyllum is well-known for its phenolic constituents, especially coumarins, which have shown to have a wide range of significant biological activities. In this study, four known phenolic constituents and two triterpenoids have been isolated from the stem bark of Calophyllum lanigerum. The compounds were two pyranochromanone acids are known as caloteysmannic acid (1), isocalolongic acid (2), a simple dihydroxyxanthone, namely euxanthone (3), one coumarin named calanone (4), and two common triterpenoids, friedelin (5), and stigmasterol (6). Chromanone acids were reported for the first time in this Calophyllum species. Cytotoxic evaluations were carried out on n-hexane extract (87.14 ± 2.04 µg/mL; 81.46 ± 2.42 µg/mL) followed by the chromanone acids (1 [79.96 ± 2.39 µM; 83.41 ± 3.39 µM] & 2 [57.88 ± 2.34; 53.04 ± 3.18 µM]) against two cancerous cell lines, MDA-MB-231 and MG-63 cell lines, respectively. The results showed that all tested samples exhibited moderate cytotoxicity.
  6. Soib HH, Ismail HF, Husin F, Abu Bakar MH, Yaakob H, Sarmidi MR
    Molecules, 2020 Jan 24;25(3).
    PMID: 31991676 DOI: 10.3390/molecules25030517
    Herbal plants are traditionally utilized to treat various illnesses. They contain phytochemicals that can be extracted using conventional methods such as maceration, soxhlet, and boiling, as well as non-conventional methods including ultrasonic, microwave, and others. Carica papaya leaves have been used for the treatment of dengue, fungal, and bacterial infections as well as an ingredient in anti-aging products. Phytochemicals analysis detected the presence of kaempferol, myricetin, carpaine, pseudocarpaine, dehydrocarpaine I and II, ferulic acid, caffeic acid, chlorogenic acid, β-carotene, lycopene, and anthraquinones glycoside. Conventional preparation by boiling and simple maceration is practical, simple, and safe; however, only polar phytochemicals are extracted. The present study aims to investigate the effects of three different non-conventional extraction techniques (ultrasonic-assisted extraction, reflux, and agitation) on C. papaya phytochemical constituents, the antioxidant capacity, and wound-healing activities. Among the three techniques, the reflux technique produced the highest extraction yield (17.86%) with the presence of saponins, flavonoids, coumarins, alkaloids, and phenolic metabolites. The reflux technique also produced the highest 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging with an IC50 value of 0.236 mg/mL followed by ultrasonic-assisted extraction (UAE) (IC50: 0.377 mg/mL) and agitation (IC50: 0.404 mg/mL). At tested concentrations (3.125 µg/mL to 500 µg/mL), all extracts do not exhibit a cytotoxicity effect on the human skin fibroblast, HSF1184. Interestingly, reflux and UAE were active fibroblast proliferators that support 85% (12.5 µg/mL) and 41% (6.25 µg/mL) better cell growth, respectively. Additionally, during the early 24 h of the scratch assay, the migration rate at 12.5 µg/mL was faster for all extracts with 51.8% (reflux), 49.3% (agitation), and 42.5% (UAE) as compared to control (21.87%). At 48 h, proliferated cells covered 78.7% of the scratch area for reflux extract, 63.1% for UAE, 61% for agitation, and 42.6% for control. Additionally, the collagen synthesis was enhanced for 31.6% and 65% after 24 and 48 h of treatment for reflux. An HPLC-MS/MS-QTOF (quadruple time-of-flight) analysis of reflux identified nine phytochemicals, including carpaine, kaempferol 3-(2G-glucosylrutinoside), kaempferol 3-(2″-rhamnosylgalactoside), 7-rhamnoside, kaempferol 3-rhamnosyl-(1->2)-galactoside-7-rhamnoside, luteolin 7-galactosyl-(1->6)-galactoside, orientin 7-O-rhamnoside, 11-hydroperoxy-12,13-epoxy-9-octadecenoic acid, palmitic amide, and 2-hexaprenyl-6-methoxyphenol. The results suggested that reflux was the best technique as compared to ultrasonic and agitation.
  7. Abu Bakar MH, Azeman NH, Mobarak NN, Mokhtar MHH, A Bakar AA
    Polymers (Basel), 2020 Sep 08;12(9).
    PMID: 32911662 DOI: 10.3390/polym12092040
    This research demonstrates a one-step modification process of biopolymer carrageenan active sites through functional group substitution in κ-carrageenan structures. The modification process improves the electronegative properties of κ-carrageenan derivatives, leading to enhancement of the material's performance. Synthesized succinyl κ-carrageenan with a high degree of substitution provides more active sites for interaction with analytes. The FTIR analysis of succinyl κ-carrageenan showed the presence of new peaks at 1068 cm-1, 1218 cm-1, and 1626 cm-1 that corresponded to the vibrations of C-O and C=O from the carbonyl group. A new peak at 2.86 ppm in 1H NMR represented the methyl proton neighboring with C=O. The appearance of new peaks at 177.05 and 177.15 ppm in 13C NMR proves the substitution of the succinyl group in the κ-carrageenan structure. The elemental analysis was carried out to calculate the degree of substitution with the highest value of 1.78 at 24 h of reaction. The XRD diffractogram of derivatives exhibited a higher degree of crystallinity compared to pristine κ-carrageenan at 23.8% and 9.2%, respectively. Modification of κ-carrageenan with a succinyl group improved its interaction with ions and the conductivity of the salt solution compared to its pristine form. This work has a high potential to be applied in various applications such as sensors, drug delivery, and polymer electrolytes.
  8. Naing NN, Ahmad Z, Musa R, Hamid FR, Ghazali H, Bakar MH
    Tob Induc Dis, 2004 Sep 15;2(3):133-40.
    PMID: 19570279 DOI: 10.1186/1617-9625-2-3-133
    A cross-sectional study was conducted to identify the factors related to smoking habits of adolescents among secondary school boys in Kelantan state, Malaysia. A total of 451 upper secondary male students from day, boarding and vocational schools were investigated using a structured questionnaire. Cluster sampling was applied to achieve the required sample size. The significant findings included: 1) the highest prevalence of smoking was found among schoolboys from the vocational school; 2) mean duration of smoking was 2.5 years; 3) there were significant associations between smoking status and parents' smoking history, academic performance, perception of the health hazards of smoking, and type of school attended. Peer influence was the major reason students gave for taking up the habit. Religion was most often indicated by non-smokers as their reason for not smoking. Approximately 3/5 of the smokers had considered quitting and 45% of them had tried at least once to stop smoking. Mass media was indicated as the best information source for the students to acquire knowledge about negative aspects of the smoking habit. The authors believe an epidemic of tobacco use is imminent if drastic action is not taken, and recommend that anti-smoking campaigns with an emphasis on the religious aspect should start as early as in primary school. Intervention programs to encourage behavior modification of adolescents are also recommended.
  9. Karunakaran T, Ngew KZ, Zailan AAD, Mian Jong VY, Abu Bakar MH
    Front Pharmacol, 2022;13:805986.
    PMID: 35281925 DOI: 10.3389/fphar.2022.805986
    Mitragynine, is a naturally occurring indole alkaloid that can be isolated from the leaves of a psychoactive medicinal plant. Mitragyna speciosa, also known as kratom, is found to possess promising analgesic effects on mediating the opioid receptors such as µ (MOR), δ (DOR), and κ (KOR). This alkaloid has therapeutic potential for pain management as it has limited adverse effect compared to a classical opioid, morphine. Mitragynine is frequently regarded to behave like an opioid but possesses milder withdrawal symptoms. The use of this alkaloid as the source of an analgesic candidate has been proven through comprehensive preclinical and clinical studies. The present data have shown that mitragynine is able to bind to opioid receptors, particularly MOR, to exhibit the analgesic effect. Moreover, the chemical and pharmacological aspects of mitragynine and its diastereomers, speciogynine, speciociliatine, and mitraciliatine, are discussed. It is interesting to know how the difference in stereochemical configuration could lead to the difference in the bioactivity of the respective compounds. Hence, in this review, the updated pharmacological and toxicological properties of mitragynine and its diastereomers are discussed to render a comprehensive understanding of the pharmacological properties of mitragynine and its diastereomers based on their structure-activity relationship study.
  10. Abu Bakar MH, Sarmidi MR, Cheng KK, Ali Khan A, Suan CL, Zaman Huri H, et al.
    Mol Biosyst, 2015 Jul;11(7):1742-74.
    PMID: 25919044 DOI: 10.1039/c5mb00158g
    Metabolomic studies on obesity and type 2 diabetes mellitus have led to a number of mechanistic insights into biomarker discovery and comprehension of disease progression at metabolic levels. This article reviews a series of metabolomic studies carried out in previous and recent years on obesity and type 2 diabetes, which have shown potential metabolic biomarkers for further evaluation of the diseases. Literature including journals and books from Web of Science, Pubmed and related databases reporting on the metabolomics in these particular disorders are reviewed. We herein discuss the potential of reported metabolic biomarkers for a novel understanding of disease processes. These biomarkers include fatty acids, TCA cycle intermediates, carbohydrates, amino acids, choline and bile acids. The biological activities and aetiological pathways of metabolites of interest in driving these intricate processes are explained. The data from various publications supported metabolomics as an effective strategy in the identification of novel biomarkers for obesity and type 2 diabetes. Accelerating interest in the perspective of metabolomics to complement other fields in systems biology towards the in-depth understanding of the molecular mechanisms underlying the diseases is also well appreciated. In conclusion, metabolomics can be used as one of the alternative approaches in biomarker discovery and the novel understanding of pathophysiological mechanisms in obesity and type 2 diabetes. It can be foreseen that there will be an increasing research interest to combine metabolomics with other omics platforms towards the establishment of detailed mechanistic evidence associated with the disease processes.
  11. Mustapha Kamil Y, Al-Rekabi SH, Yaacob MH, Syahir A, Chee HY, Mahdi MA, et al.
    Sci Rep, 2019 09 17;9(1):13483.
    PMID: 31530893 DOI: 10.1038/s41598-019-49891-7
    The exponential escalation of dengue cases has indeed become a global health crisis. This work elaborates on the development of a biofunctionalized tapered optical fiber (TOF) based sensor with the integration of polyamidoamine (PAMAM) dendrimer for the detection of dengue E protein. The dimension of the TOF generated an evanescent field that was sensitive to any changes in the external medium while the integration of PAMAM promoted more adhesion of bio-recognition molecules; anti-DENV II E protein antibodies; that were complementary to the targeted protein. This in return created more active sites for the absorption of DENV II E proteins onto the tapered region. The resolution and detection limit of the sensor are 19.53 nm/nM and 1 pM, respectively with Kd = 1.02 × 10-10 M.
  12. Salehmin MNI, Hil Me MF, Daud WRW, Mohd Yasin NH, Abu Bakar MH, Sulong AB, et al.
    Sci Total Environ, 2023 Jan 10;855:158527.
    PMID: 36096221 DOI: 10.1016/j.scitotenv.2022.158527
    Microbial electrodialysis cells (MEDCs) offer simultaneous wastewater treatment, water desalination, and hydrogen production. In a conventional design of MEDCs, the overall performance is retarded by the accumulation of protons on the anode due to the integration of an anion exchange membrane (AEM). The accumulation of protons reduces the anolyte pH to become acidic, affecting the microbial viability and thus limiting the charge carrier needed for the cathodic reaction. This study has modified the conventional MEDC with an internal proton migration pathway, known as the internal proton migration pathway-MEDC (IP-MEDC). Simulation tests under abiotic conditions demonstrated that the pH changes in the anolyte and catholyte of IP-MEDC were smaller than the pH changes in the anolyte and catholyte without the proton pathways. Under biotic conditions, the performance of the IP-MEDC agreed well with the simulation test, showing a significantly higher chemical oxygen demand (COD) removal rate, desalination rate, and hydrogen production than without the migration pathway. This result is supported by the lowest charge transfer resistance shown by EIS analysis and the abundance of microbes on the bioanode through field emission scanning electron microscopy (FESEM) observation. However, hydrogen production was diminished in the second-fed batch cycle, presumably due to the active diffusion of high Cl¯ concentrations from desalination to the anode chamber, which was detrimental to microbial growth. Enlarging the anode volume by threefold improved the COD removal rate and hydrogen production rate by 1.7- and 3.4-fold, respectively, owing to the dilution effect of Cl¯ in the anode. This implied that the dilution effect satisfies both the microbial viability and conductivity. This study also suggests that the anolyte and catholyte replacement frequencies can be reduced, typically at a prolonged hydraulic retention time, thus minimizing the operating cost (e.g., solution pumping). The use of a high concentration of NaCl (35 g L-1) in the desalination chamber and catholyte provides a condition that is close to practicality.
  13. Ibrahim I, Salehmin MNI, Balachandran K, Hil Me MF, Loh KS, Abu Bakar MH, et al.
    Front Microbiol, 2023;14:1192187.
    PMID: 37520357 DOI: 10.3389/fmicb.2023.1192187
    Microbial electrosynthesis (MES) is an emerging electrochemical technology currently being researched as a CO2 sequestration method to address climate change. MES can convert CO2 from pollution or waste materials into various carbon compounds with low energy requirements using electrogenic microbes as biocatalysts. However, the critical component in this technology, the cathode, still needs to perform more effectively than other conventional CO2 reduction methods because of poor selectivity, complex metabolism pathways of microbes, and high material cost. These characteristics lead to the weak interactions of microbes and cathode electrocatalytic activities. These approaches range from cathode modification using conventional engineering approaches to new fabrication methods. Aside from cathode development, the operating procedure also plays a critical function and strategy to optimize electrosynthesis production in reducing operating costs, such as hybridization and integration of MES. If this technology could be realized, it would offer a new way to utilize excess CO2 from industries and generate profitable commodities in the future to replace fossil fuel-derived products. In recent years, several potential approaches have been tested and studied to boost the capabilities of CO2-reducing bio-cathodes regarding surface morphology, current density, and biocompatibility, which would be further elaborated. This compilation aims to showcase that the achievements of MES have significantly improved and the future direction this is going with some recommendations. Highlights - MES approach in carbon sequestration using the biotic component.- The role of microbes as biocatalysts in MES and their metabolic pathways are discussed.- Methods and materials used to modify biocathode for enhancing CO2 reduction are presented.
  14. Phongphane L, Mohd Radzuan SN, Abu Bakar MH, Che Omar MT, Supratman U, Harneti D, et al.
    Comput Biol Chem, 2023 Oct;106:107938.
    PMID: 37542847 DOI: 10.1016/j.compbiolchem.2023.107938
    In our effort to develop potent anti-hyperglycemic compounds with inhibitory activity against α-amylase and α-glucosidase, a series of novel quinoxaline-isoxazole moieties were synthesized. The novel quinoxaline-isoxazole derivatives were assessed in vitro for their anti-hyperglycemic activities on α-amylase and α-glucosidase inhibitions. The results revealed promising IC50 values compared to acarbose as a positive control for α-amylase and α-glucosidase. Among them, N-Ethyl-7-chloro-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5b showed dual inhibitory with IC50 of 24.0 µM for α-amylase and 41.7 µM for α-glucosidase. In addition, N-Ethyl-7-methoxy-3-((3-(2-chlorophenyl)isoxazol-5-yl)methoxy)quinoxalin-2-amine 5j also had dual bioactivities against α-amylase and α-glucosidase with IC50 of 17.0 and 40.1 µM, respectively. Nevertheless, two more compounds N-Ethyl-7-cyano-3-((3-phenylisoxazol-5-yl)methoxy)quinoxaline-2-amine 5e showed strong mono-inhibition for α-glucosidase with IC50 of 16.6 µM followed by N-Ethyl-7-methoxy-3-((3-phenylisoxazol-5-yl)methoxy)quinoxalin-2-amine 5 f with IC50 of 18.6 µM. The molecular docking study for α-glucosidase inhibitor provided the binding energy ranging from 8.3 to 9.1 kcal/mol and α-amylase inhibitor showed the binding energy score at 8.4 and 8.5 kcal/mol. The dual inhibitions nature of 5b and 5j were further analyzed and confirmed via molecular dynamics including the stability of the compound, interaction energy, binding free energy, and the interaction residue analysis using the MM-GBSA approach. The results showed that compound 5j was the most potent compound. Lastly, the drug-likeness properties were also evaluated with all synthesized compounds 5a-5j and the results reveal that all potent compounds meet Lipinski's rules of five.
  15. Zailan AAD, Karunakaran T, Santhanam R, Suriaty Yaakop A, Mohan S, Abu Bakar MH, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301936.
    PMID: 38268343 DOI: 10.1002/cbdv.202301936
    The genus Calophyllum from the family Calophyllaceae has been extensively investigated in the past due to its rich source of bioactive phenolics such as coumarins, chromanones, and xanthones. In this study, phytochemical investigation on the stem bark of Calophyllum havilandii has afforded a new 4-propyldihydrocoumarin derivative, havilarin (1) together with calolongic acid (2), caloteysmannic acid (3), isocalolongic acid (4), euxanthone (5), and β-sitosterol (6). The chemical structure of compound 1 was elucidated and established based on detailed spectroscopic techniques, including MS, IR, UV, 1D and 2D NMR. The results of anti-bacillus study indicated that the chloroform extract showed promising activities with MIC value ranging between 0.5 to 1 μg/mL on selected bacillus strains. Besides, the plant extracts and compounds 1-4 were assessed for their cytotoxicity potential on HL-7702 cell line. All the tested plant extracts and respective chemical constituents displayed non-cytotoxic activity on HL-7702 cell line.
  16. Muhammad MT, Beniddir MA, Phongphane L, Abu Bakar MH, Hussin MH, Awang K, et al.
    Fitoterapia, 2024 Apr;174:105873.
    PMID: 38417682 DOI: 10.1016/j.fitote.2024.105873
    Diabetes mellitus stands as a metabolic ailment marked by heightened blood glucose levels due to inadequate insulin secretion. The primary aims of this investigative inquiry encompassed the isolation of phytochemical components from the bark of Kopsia teoi, followed by the assessment of their α-amylase inhibition. The phytochemical composition of the K. teoi culminated in the discovery of a pair of new indole alkaloids; which are 16-epi-deacetylakuammiline N(4)-methylene chloride (akuammiline) (1), and N(1)-methoxycarbonyl-11-methoxy-12-hydroxy-Δ14-17-kopsinine (aspidofractinine) (2), together with five known compounds i.e. kopsiloscine G (aspidofractinine) (3), akuammidine (sarpagine) (4), leuconolam (aspidosperma) (5), N-methoxycarbonyl-12-methoxy-Δ16, 17-kopsinine (aspidofractinine) (6), and kopsininate (aspidofractinine) (7). All compounds were determined via spectroscopic analyses. The in vitro evaluation against α-amylase showed good inhibitory activities for compounds 5-7 with the inhibitory concentration (IC50) values of 21.7 ± 1.2, 34.1 ± 0.1, and 30.0 ± 0.8 μM, respectively compared with the reference acarbose (IC50 = 34.4 ± 0.1 μM). The molecular docking outputs underscored the binding interactions of compounds 5-7 ranging from -8.1 to -8.8 kcal/mol with the binding sites of α-amylase. Consequently, the outcomes highlighted the anti-hyperglycemic attributes of isolates from K. teoi.
  17. Abu Bakar MH, Azeman NH, Mobarak NN, Nazri NAA, Daniyal WMEMM, Othman MQ, et al.
    PMID: 38733916 DOI: 10.1016/j.saa.2024.124419
    The utilization of UV-Vis spectroscopy with amino-functionalized carbon quantum dots (NCQD) as a positive fluorophore reagent for chloride sensing in oil marks a notable advancement in analytical spectroscopy chemistry. This approach streamlines the detection process by eliminating the need for lengthy procedures and pretreatment steps typically associated with chloride detection in edible oil. By incorporating NCQD in chloride detection within the oil matrix, the wavelength analysis transitions from the UV to the visible region. This shift eliminates interference from oil matrix interactions, ensuring more accurate results. Molecular analysis of NCQD reveals significant shifts in its Fourier Transformation Infrared and photoluminescence spectroscopy peaks due to interaction with chloride in edible oil. It has two impressive sensitivity ranges spanning from 0.1-1.0 to 1.0-8.0 ppm, with a value of -0.4656 au. ppm-1 (R2 = 0.998) and -0.0361 au. ppm-1 (R2 = 0.931), respectively, the technique meets regulatory standards while achieving a low limit of detection (LOD) of 0.1 ppm. This places it on par with conventional methods and commercial sensors. The NCQD-UV-Vis spectroscopy method not only enhances the efficiency and accuracy of chloride detection but also holds promise for various industrial applications requiring simple and precise monitoring of chloride levels in oil samples.
  18. Onifade OA, Yusairie FA, Abu Bakar MH, Alresheedi MT, Khoon Ng E, Mahdi MA, et al.
    Biosens Bioelectron, 2024 Oct 01;261:116486.
    PMID: 38861811 DOI: 10.1016/j.bios.2024.116486
    Current uric acid detection methodologies lack the requisite sensitivity and selectivity for point-of-care applications. Plasmonic sensors, while promising, demand refinement for improved performance. This work introduces a biofunctionalized sensor predicated on surface plasmon resonance to quantify uric acid within physiologically relevant concentration ranges. The sensor employs the covalent immobilization of uricase enzyme using 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-Hydroxysuccinimide (NHS) crosslinking agents, ensuring the durable adherence of the enzyme onto the sensor probe. Characterization through atomic force microscopy and Fourier transform infrared spectroscopy validate surface alterations. The Langmuir adsorption isotherm model elucidates binding kinetics, revealing a sensor binding affinity of 298.83 (mg/dL)-1, and a maximum adsorption capacity of approximately 1.0751°. The biofunctionalized sensor exhibits a sensitivity of 0.0755°/(mg/dL), a linear correlation coefficient of 0.8313, and a limit of detection of 0.095 mg/dL. Selectivity tests against potentially competing interferents like glucose, ascorbic acid, urea, D-cystine, and creatinine showcase a significant resonance angle shift of 1.1135° for uric acid compared to 0.1853° for interferents at the same concentration. Significantly, at a low uric acid concentration of 0.5 mg/dL, a distinct shift of 0.3706° was observed, setting it apart from the lower values noticed at higher concentrations for all typical interferent samples. The uricase enzyme significantly enhances plasmonic sensors for uric acid detection, showcasing a seamless integration of optical principles and biological recognition elements. These sensors hold promise as vital tools in clinical and point-of-care settings, offering transformative potential in biosensing technologies and the potential to revolutionize healthcare outcomes in biomedicine.
  19. Mohd Radzuan SN, Phongphane L, Abu Bakar MH, Che Omar MT, Nor Shahril NS, Supratman U, et al.
    RSC Adv, 2024 Feb 29;14(11):7684-7698.
    PMID: 38444963 DOI: 10.1039/d3ra08642a
    New phenylisoxazole quinoxalin-2-amine hybrids 5a-i were successfully synthesised with yields of 53-85% and characterised with various spectroscopy methods. The synthesised hybrids underwent in vitro α-amylase and α-glucosidase inhibitory assays, with acarbose as the positive control. Through the biological study, compound 5h exhibits the highest α-amylase inhibitory activity with IC50 = 16.4 ± 0.1 μM while compounds 5a-c, 5e and 5h exhibit great potential as α-glucosidase inhibitors, with 5c being the most potent (IC50 = 15.2 ± 0.3 μM). Among the compounds, 5h exhibits potential as a dual inhibitor for both α-amylase (IC50 = 16.4 ± 0.1 μM) and α-glucosidase (IC50 = 31.6 ± 0.4 μM) enzymes. Through the molecular docking studies, the inhibition potential of the selected compounds is supported. Compound 5h showed important interactions with α-amylase enzyme active sites and exhibited the highest binding energy of -8.9 ± 0.10 kcal mol-1, while compound 5c exhibited the highest binding energy of -9.0 ± 0.20 kcal mol-1 by forming important interactions with the α-glucosidase enzyme active sites. The molecular dynamics study showed that the selected compounds exhibited relative stability when binding with α-amylase and α-glucosidase enzymes. Additionally, compound 5h demonstrated a similar pattern of motion and mechanism of action as the commercially available miglitol.
  20. Abu Bakar MH, Azeman NH, Mobarak NN, Ahmad Nazri NA, Tengku Abdul Aziz TH, Md Zain AR, et al.
    Polymers (Basel), 2022 Jan 14;14(2).
    PMID: 35054734 DOI: 10.3390/polym14020329
    This research investigates the physicochemical properties of biopolymer succinyl-κ-carrageenan as a potential sensing material for NH4+ Localized Surface Plasmon Resonance (LSPR) sensor. Succinyl-κ-carrageenan was synthesised by reacting κ-carrageenan with succinic anhydride. FESEM analysis shows succinyl-κ-carrageenan has an even and featureless topology compared to its pristine form. Succinyl-κ-carrageenan was composited with silver nanoparticles (AgNP) as LSPR sensing material. AFM analysis shows that AgNP-Succinyl-κ-carrageenan was rougher than AgNP-Succinyl-κ-carrageenan, indicating an increase in density of electronegative atom from oxygen compared to pristine κ-carrageenan. The sensitivity of AgNP-Succinyl-κ-carrageenan LSPR is higher than AgNP-κ-carrageenan LSPR. The reported LOD and LOQ of AgNP-Succinyl-κ-carrageenan LSPR are 0.5964 and 2.7192 ppm, respectively. Thus, AgNP-Succinyl-κ-carrageenan LSPR has a higher performance than AgNP-κ-carrageenan LSPR, broader detection range than the conventional method and high selectivity toward NH4+. Interaction mechanism studies show the adsorption of NH4+ on κ-carrageenan and succinyl-κ-carrageenan were through multilayer and chemisorption process that follows Freundlich and pseudo-second-order kinetic model.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links