Displaying publications 21 - 40 of 64 in total

Abstract:
Sort:
  1. Alshawsh MA, Abdulla MA, Ismail S, Amin ZA
    PMID: 21647311 DOI: 10.1155/2011/103039
    Orthosiphon stamineus as medicinal plant is commonly used in Malaysia for treatment of hepatitis and jaundice; in this study, the ethanol extracts were applied to evaluate the hepatoprotective effects in a thioacetamide-induced hepatotoxic model in Sprague Dawley rats. Five groups of adult rats were arranged as follows: Group 1 (normal control group), Group 2 Thioacetamide (TAA) as positive control (hepatotoxic group), Group 3 Silymarin as a well-known standard drug (hepatoprotective group), and Groups 4 and 5 as high and low dose (treatment groups). After 60-day treatment, all rats were sacrificed. The hepatotoxic group showed a coarse granulation on the liver surface when compared to the smooth aspect observed on the liver surface of the other groups. Histopathological study confirmed the result; moreover, there was a significant increase in serum liver biochemical parameters (ALT, AST, ALP, and Bilirubin) and the level of liver Malondialdehyde (MDA), accompanied by a significant decrease in the level of total protein and Albumin in the TAA control group when compared with that of the normal group. The high-dose treatment group (200 mg/kg) significantly restored the elevated liver function enzymes near to normal. This study revealed that 200 mg/kg extracts of O. stamineus exerted a hepatoprotective effect.
  2. Alshehade SA, Almoustafa HA, Alshawsh MA, Chik Z
    Heliyon, 2024 Jul 15;10(13):e33665.
    PMID: 39040270 DOI: 10.1016/j.heliyon.2024.e33665
    Flow cytometry techniques utilizing dual staining with annexin V and propidium iodide (PI) provide a robust method for quantitatively analyzing apoptosis induction. Annexin V binds phosphatidylserine exposed on the outer leaflet of the plasma membrane during early apoptosis, while PI permeates late apoptotic/necrotic cells. Simultaneous staining allows differentiation of viable, early apoptotic, and late apoptotic/necrotic populations. This approach can be enhanced by using fluorochrome-conjugated antibodies to stain specific proteins, enabling the simultaneous tracking of protein expression changes in defined cell subpopulations during apoptosis. This multiparametric approach provides key insights into signaling regulation and the mechanisms underlying the apoptotic response to cytotoxic treatments. Here we present a protocol that combines annexin V-FITC/PI staining with APC-conjugated antibody labeling in MDA-MB-231 breast cancer cells treated with doxorubicin. This protocol enables both the quantitative assessment of apoptosis induction and the tracking of decreased CD44 expression from viable to apoptotic cells. This protocol also provides guidelines for appropriate filter selection, compensation controls, gating strategies, and troubleshooting. This robust protocol holds significant potential for elucidating signaling networks involved in apoptosis and therapeutic resistance across various cellular models.
  3. Ganesan T, Sinniah A, Ramasamy TS, Alshawsh MA
    Biochem Biophys Res Commun, 2024 Sep 17;725:150202.
    PMID: 38885563 DOI: 10.1016/j.bbrc.2024.150202
    The annexin superfamily protein, Annexin A1, initially recognized for its glucocorticoid-induced phospholipase A2-inhibitory activities, has emerged as a crucial player in diverse cellular processes, including cancer. This review explores the multifaceted roles of Anx-A1 in cancer chemoresistance, an area largely unexplored. Anx-A1's involvement in anti-inflammatory processes, its complex phosphorylation patterns, and its context-dependent switch from anti-to pro-inflammatory in cancer highlights its intricate regulatory mechanisms. Recent studies highlight Anx-A1's paradoxical roles in different cancers, exhibiting both up- and down-regulation in a tissue-specific manner, impacting different hallmark features of cancer. Mechanistically, Anx-A1 modulates drug efflux transporters, influences cancer stem cell populations, DNA damages and participates in epithelial-mesenchymal transition. This review aims to explore Anx-A1's role in chemoresistance-associated pathways across various cancers, elucidating its impact on survival signaling cascades including PI3K/AKT, MAPK/ERK, PKC/JNK/P-gp pathways and NFκ-B signalling. This review also reveals the clinical implications of Anx-A1 dysregulation in treatment response, its potential as a prognostic biomarker, and therapeutic targeting strategies, including the promising Anx-A1 N-terminal mimetic peptide Ac2-26. Understanding Anx-A1's intricate involvement in chemoresistance offers exciting prospects for refining cancer therapies and improving treatment outcomes.
  4. Ranasinghe R, Mathai M, Alshawsh MA, Zulli A, Ranasinghe R
    Acta Diabetol, 2024 Nov 11.
    PMID: 39527296 DOI: 10.1007/s00592-024-02401-2
    BACKGROUND: This study identifies a new set of salient risk factors that may trigger danger signals of vascular dysregulation in T1D. Vascular abnormalities and impairment of CVD is a major adverse effect of T1D, particularly affecting children, adolescents and young adults.

    METHODS: The patients of T1D were compared with the healthy control (HC) for the risk factors of vascular dysregulation in published studies from year 2013 to 2023. The PubMed, Web of Science and Google Scholar databases were searched from 1/1/2013 to 1/9/2023. The risk of bias was assessed with the Cochrane (ROBINS-I ) tool, relevant to clinical subjects. A random effects model was followed and analysed by RevMan 5.4 and GraphPad Prism software.

    RESULTS: 80 relevant case-control studies having 7492 T1D patients and 5293 HC were included. The age and sex-matched HC consisted of persons free of disease and not under any medication while clinical subjects of

  5. Almagrami AA, Alshawsh MA, Saif-Ali R, Shwter A, Salem SD, Abdulla MA
    PLoS One, 2014;9(5):e96004.
    PMID: 24819728 DOI: 10.1371/journal.pone.0096004
    Acanthus ilicifolius, a mangrove medicinal plant, is traditionally used to treat a variety of diseases. The aim of this research is to assess the chemoprotective outcomes of A. ilicifolius ethanolic extract against azoxymethane (AOM) induced colonic aberrant crypt foci (ACF) in rats.
  6. Dhiyaaldeen SM, Alshawsh MA, Salama SM, Alwajeeh NS, Al Batran R, Ismail S, et al.
    Biomed Res Int, 2014;2014:792086.
    PMID: 24587992 DOI: 10.1155/2014/792086
    Wound healing involves inflammation followed by granular tissue development and scar formation. In this study, synthetic chalcone 3-(2-Chlorophenyl)-1-phenyl-propenone (CPPP) was investigated for a potential role in enhancing wound healing and closure. Twenty-four male rats were divided randomly into 4 groups: carboxymethyl cellulose (CMC) (0.2 mL), Intrasite gel, and CPPP (25 or 50 mg/mL). Gross morphology, wounds treatment with the CPPP, and Intrasite gel accelerate the rate of wound healing compared to CMC group. Ten days after surgery, the animals were sacrificed. Histological assessment revealed that the wounds treated with CPPP showed that wound closure site contained little amount of scar and the granulation tissue contained more collagen and less inflammatory cells than wound treated with CMC. This finding was confirmed with Masson's trichrome staining. The antioxidant defence enzymes catalase (CAT) and superoxide dismutase (SOD) were significantly increased in the wound homogenates treated with CPPP (P < 0.05) compared to CMC treated group. However, in the CPPP treatment group, lipid peroxidation (MDA) was significantly decreased (P < 0.05), suggesting that the CPPP also has an important role in protection against lipid peroxidation-induced skin injury after ten days of treatment with CPPP, which is similar to the values of cytokines TGF-β and TNF-α in tissue homogenate. Finally the administration of CPPP at a dosage of 25 and 50 mg/kg was suitable for the stimulation of wound healing.
  7. Alnajar ZA, Abdulla MA, Ali HM, Alshawsh MA, Hadi AH
    Molecules, 2012;17(3):3547-59.
    PMID: 22433579 DOI: 10.3390/molecules17033547
    Melastoma malabathricum (MM) is a well-known plant in Malaysian traditional medicine, locally known as senduduk. Its ethanol and aqueous extracts have been used in the present investigation to study the immunomodulatory role on human peripheral blood mononuclear cell (PBMC), and the DPPH, ABTS and FRAP free radical scavenging activities were also measured. Total flavonoids and total phenolic contents were assayed and the antibacterial effect was tested against four species of bacteria; two Gram-positive (Staphylococcus aureus and Streptococcus agalactiae) and two Gram-negative (Escherichia coli and Klebsilla pneumonia). The tests were carried out using the disc diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. Moreover, the acute toxicity was evaluated in vivo on the ethanol extract of MM to establish its safety when administered orally. In our results, both extracts of MM showed abilities to scavenge DPPH and ABTS free radicals, IC(50) values: (11.599 ± 0.84, 10.573 ± 0.58 µmol/L) and (62.657 ± 0.78, 63.939 ± 0.48 µmol/L) for ethanol and aqueous extracts respectively. Indeed the ethanol extract evidenced high phenolic content (384.33 ± 0.005 mg/g), flavonoids contents (85.8 ± 0.009 mg/g) and ferric reducing antioxidant power (33,590 ± 0.038 mmol/g), with high activity against S. aureus and S. agalactiae (11 ± 0.3 and 12 ± 0.6 mm inhibition zones). Likewise, the percentage of peripheral blood mononuclear cells (PBMC) viability was increased in response to MM, IC(50) values (1.781 ± 1.2 and 6.545 ± 0.93 µg/mL) for ethanol and aqueous extracts, respectively. In addition, our results showed that the MM extract is safe even at a high dose of 5,000 mg/kg and has no oral toxicity. These findings suggest the excellent medicinal bioactivity of MM and explain the popularity of this plant in the folk medicine as a remedy for different illnesses.
  8. Alshawsh MA, Abdulla MA, Ismail S, Amin ZA, Qader SW, Hadi HA, et al.
    Molecules, 2012;17(5):5385-95.
    PMID: 22569417 DOI: 10.3390/molecules17055385
    Orthosiphon stamineus is considered an important traditional folk medicine. In this study ethanol and aqueous extracts of O. stamineus were evaluated in vitro for their antioxidant, antimicrobial as well as for their immunomodulatory properties on human peripheral blood mononuclear cells (PBMCs). The DPPH radical scavenging method was used for the determination of antioxidant activity, while the antibacterial efficacy was investigated by both disc diffusion method and Minimum Inhibitory Concentration (MIC) against four bacterial strains (Gram-positive and Gram-negative). Furthermore, the immunomodulatory potential of the extracts was investigated through the MTT assay. Aqueous extract of O. stamineus exhibited significant free radical scavenging activity with IC₅₀ 50 9.6 µg/mL, whereas the IC₅₀ for the ethanol extract was 21.4 µg/mL. The best antimicrobial activity was shown by the aqueous extract of O. stamineus against Staphylococcus aureus, with inhibition zone of 10.5 mm and MIC value 1.56 mg/mL. Moreover, the results observed from the MTT assay showed that both plant extracts stimulated the PBMCs proliferation in vitro in a concentration-dependent manner, but the aqueous extract has remarkable activity against PBMCs. These findings indicate that O. stamineus showed high antioxidant activity and may be considered as an immunomodulatory agent.
  9. Amin ZA, Abdulla MA, Ali HM, Alshawsh MA, Qadir SW
    J Sci Food Agric, 2012 Jul;92(9):1874-7.
    PMID: 22231455 DOI: 10.1002/jsfa.5554
    Recently much attention has been paid to biologically active plants because of their low production cost and fewer adverse effects compared with chemical drugs. In the present investigation the bioactivity of Phyllanthus niruri ethanol and aqueous extracts was evaluated in vitro.
  10. Md Zin SR, Kassim NM, Mohamed Z, Fateh AH, Alshawsh MA
    J Ethnopharmacol, 2019 Dec 05;245:112180.
    PMID: 31445135 DOI: 10.1016/j.jep.2019.112180
    ETHNOPHARMACOLOGICAL RELEVANCE: Anastatica hierochuntica (A. hierochuntica) is a plant consumed in folk medicine for the treatment of reproductive system related problems and metabolic disorders. It is of concern that the herb is commonly consumed by pregnant women towards the end of pregnancy to ease the process of labour, despite the lack of studies evaluating its safety.

    AIM OF THIS STUDY: This study aimed to investigate the potential toxicity effects of A. hierochuntica in pregnant Sprague-Dawley rats and their developing foetuses.

    MATERIALS AND METHODS: Experiments were conducted in accordance to the Organisation for Economic Co-operation and Development guideline 414. Animals were randomly divided into four groups (n = 10 females per group): negative control (received the vehicle only), experimental animals received 250, 500, and 1000 mg/kg A. hierochuntica aqueous extracts (AHAE), respectively. Treatment was administered daily by oral gavage from gestational day (GD) 6-20, and caesarian section performed on GD21.

    RESULTS: There were significant reduction in the corrected maternal weight gain of dams and body weight of foetuses in the lowest and highest dose of AHAE-treated animals compared to the control. These findings were associated with the increase in anogenital distance index and multiple congenital anomalies observed in some of the offspring. On the other hand, rats treated with 500 mg/kg showed higher embryonic survival rate with absence of significant treatment-related effect.

    CONCLUSION: Findings showed that highest and lowest doses of AHAE have prenatal toxicity effects in SD rats. Therefore, AHAE is potentially harmful to the developing foetuses especially when consumed during the period of implantation and organogenesis. As for the rats treated with 500 mg/kg AHAE, there was no significant treatment-related effect. Hence, we postulate that this finding suggests that the disruption on the hormonal regulation could have been compensated by negative feedback response. The compensated effects of AHAE at 500 mg/kg and the presence of lowest observed adverse effect level (LOAEL) at 250 mg/kg has resulted in a non-monotonous dose response curve (NMDRC), which complicates the determination of the value of no-observed-adverse effect level (NOAEL).

  11. Alshagga MA, Mohamed Z, Seyedan A, Ebling FJP, Alshawsh MA
    J Ethnopharmacol, 2020 Nov 15;262:113187.
    PMID: 32730892 DOI: 10.1016/j.jep.2020.113187
    ETHNOPHARMACOLOGICAL RELEVANCE: Khat (Catha edulis (Vahl) Forssk.) is a herb from the Celastraceae family (also known as qat, gaad, or mirra) that is widely-consumed in East Africa and in the Arabian peninsula. The green leaves and small stems are consumed primarily at recreational and social gatherings, and medicinally for their antidiabetic and appetite-suppression effects.

    AIMS: The objectives of this study were to determine the effects of khat and its active alkaloid, cathinone, on food intake and body weight in mice maintained on a high-fat diet, and to investigate its mechanism of action in white adipose tissue and in the hypothalamus.

    MATERIALS & METHOD: Adult male mice (C57BL/6J) were fed a high fat diet (HFD) for 8 weeks (n = 30), then divided into 5 groups and treated daily for a further 8 weeks with HFD + vehicle [control (HFD)], HFD + 15 mg/kg orlistat (HFDO), HFD + 200 mg/kg khat extract (HFDK200), HFD + 400 mg/kg khat extract (HFDK400) and HFD + 3.2 mg/kg cathinone (HFDCAT). Treatments were carried out once daily by gastric gavage. Blood and tissue samples were collected for biochemical, hormonal and gene expression analyses.

    RESULTS: Khat extracts and orlistat treatment significantly reduced weight gain as compared to control mice on HFD, and cathinone administration completely prevented weight gain in mice fed on HFD. Khat treatment caused a marked reduction in body fat and in serum triglycerides. A dose-dependent effect of khat was observed in reducing serum leptin concentrations. Analysis of gene expression in adipose tissue revealed a significant upregulation of two lipolysis pathway genes:(adipose triglyceride lipase (PNPLA-2) and hormone-sensitive lipase (LIPE). In the hypothalamic there was a significant (P 

  12. Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zain SR, Alshawsh MA
    J Ethnopharmacol, 2019 May 10;235:88-99.
    PMID: 30738113 DOI: 10.1016/j.jep.2019.02.007
    ETHNOPHARMACOLOGICAL RELEVANCE: Traditionally, Verbena officinalis L. has been used for reproductive and gynaecological purposes. However, the mutagenicity and genotoxicity of V. officinalis have not been extensively investigated.

    AIM OF THE STUDY: To assess the in vitro mutagenicity and in vivo genotoxicity of aqueous extract of V. officinalis leaves using a modified Ames test and rat bone marrow micronucleus assay according to OECD guidelines.

    MATERIALS AND METHODS: In vitro Ames test was carried out using different strains of Salmonella (TA97a, TA98, TA100, and TA1535) and Escherichia coli WP2 uvrA (pKM101) in the presence or absence of metabolic activation (S9 mixture). For micronucleus experiment, male and female Sprague-Dawley rats (n = 6/group) were received a single oral daily dose of 500, 1000, and 2000 mg/kg of V. officinalis extract for three days. Negative and positive control rats were received distilled water or a single intraperitoneal injection of 50 mg/kg of cyclophosphamide, respectively. Following dissection, femurs were collected and bone marrow cells were stained with May-Grünwald-Giemsa solution for micronucleus assessment.

    RESULTS: Ames test results demonstrated that 5, 2.5, 1.25 and 0.625 mg/ml of V. officinalis extract induced a significant mutagenic effect against TA100 and TA98 strains (with and without metabolic activation). Findings of the animal study showed there were no significant increase in the micronucleated polychromatic erythrocytes (MNPE) and no significant alterations in the polychromatic erythrocytes (PCE) to normochromatic erythrocytes (NCE) ratio of treated rats as compared with their negative control. Meanwhile, significantly increased in the MNPEs was seen in the cyclophosphamide-treated group only.

    CONCLUSION: Aqueous extract of V. officinalis has mutagenic effect against TA98 and TA100 strains as demonstrated by Ames test, however, there is no in vivo clastogenic and myelotoxic effect on bone marrow micronucleus of rats indicating that the benefits of using V. officinalis in traditional practice should outweigh risks.

  13. Fateh AH, Mohamed Z, Chik Z, Alsalahi A, Md Zin SR, Alshawsh MA
    Chem Biol Interact, 2019 May 01;304:28-42.
    PMID: 30807743 DOI: 10.1016/j.cbi.2019.02.016
    Verbena officinalis is widely used by women for maintaining general health and treating various gynaecological disorders during pregnancy. A case report has indicated that the consumption of V. officinalis induced an abortifacient effect. Hence, this study aimed to investigate the prenatal developmental toxicity of this plant according to OECD guideline (no. 414). A total of 50 pregnant female rats (dams) were distributed into five groups (n = 10); 500 mg/kg 1000 mg/2000 mg/kg and 3000 mg/kg of V. offcinalis extracts and the fifth group served as a normal control. All dams received their respective oral single daily treatment from the 6th to the 20th day of gestation. Maternal clinical toxicity signs, body weight and weight gain were recorded. Caesarean sections were performed on day 21 to evaluate embryo-foetal developmental toxicity. For dams, ovaries were harvested and weighed. The number of corpora lutea, implantation sites, and resorptions were recorded. No mortality was observed in dams, but their body weight gain was significantly reduced particularly in dams treated with 2000 and 3000 mg/kg V. officinalis. Asymmetrical distribution of implantation sites and embryos were observed. Embryo-fetotoxicity retardation was observed as evident by the decrease in foetal weight, head cranium, tail length, and higher incidence in the pre-and post-implantation loss. Some foetal skeleton abnormalities such as incomplete ossification of skull, sternebrae, and metatarsal bones were observed in foetuses of the 2000 and 3000 mg/kg V. officinalis-treated dams. LC/MS analysis identified the major constituents including geniposidic acid, tuberonic acid glucoside, luteolin 7, 3'-digalacturonide, iridotrial and apigenin. The glycosylated flavonoids such as apigenin and luteolin could be responsible for the reported prenatal developmental toxicity. In conclusion, the use of V. officinalis during pregnancy is not safe indicating evidence-based toxic effects on the reproductive performance of dams and dose-dependent risk potentials to the foetuses.
  14. Zin SRM, Kassim NM, Alshawsh MA, Hashim NE, Mohamed Z
    Biomed Pharmacother, 2017 Jul;91:611-620.
    PMID: 28486192 DOI: 10.1016/j.biopha.2017.05.011
    Anastatica hierochuntica L. (A. hierochuntica) is a desert plant consumed by people across the globe to treat various medical conditions. This review is aimed at providing a summary of the scientific findings on biological activities of A. hierochuntica and suggests areas in which further research is needed. This systematic review was synthesized from the literature obtained from the following databases; PubMed, Science Direct, Web of Science, Ovid Medline, Scopus, Google Scholar and WorldCat. Previous studies have indicated that the methanolic and aqueous extracts of this plant have antioxidant, antifungal and antimicrobial activities. It was shown to have the ability to activate phagocytes and to possess microbicidal activity, thereby causing increased resistance to infection. Both methanolic and aqueous extracts of this plant were also demonstrated to have a hypoglycaemic property, whilst the methanolic extract significantly exhibited hypolipidaemic effects in diabetic rats. Moreover, the methanolic extract of A. hierochuntica has been suggested to have hepatoprotective properties. This is supported by its ability to significantly decrease transaminase and alkaline phosphatase activities in alloxan-induced diabetic rats. Besides, this desert plant exhibited anti-inflammatory, anti-melanogenic and gastroprotective activities. Even though A. hierochuntica is widely used, studies on this plant are still scarce, thus its reputed biological activities and medical benefits require critical evaluation. Before A. hierochuntica can be used clinically, further studies need to be conducted to increase our understanding of the effects of this plant, its constituents, and possible mechanisms of action.
  15. Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA
    Cell Oncol (Dordr), 2020 Apr;43(2):177-193.
    PMID: 31677065 DOI: 10.1007/s13402-019-00477-5
    BACKGROUND: In recent years, the high mobility group box-1 (HMGB1) protein, a damage-associated molecular pattern (DAMP) molecule, has been found to play multifunctional roles in the pathogenesis of colorectal cancer. Although much attention has been given to the diagnostic and prognostic values of HMGB1 in colorectal cancer, the exact functional roles of the protein as well as the mechanistic pathways involved have remained poorly defined. This systematic review aims to discuss what is currently known about the roles of HMGB1 in colorectal cancer development, growth and progression, and to highlight critical areas for future investigations. To achieve this, the bibliographic databases Pubmed, Scopus, Web of Science and ScienceDirect were systematically screened for articles from inception till June 2018, which address associations of HMGB1 with colorectal cancer.

    CONCLUSIONS: HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.

  16. Koosha S, Mohamed Z, Sinniah A, Ibrahim Z, Seyedan A, Alshawsh MA
    Life Sci, 2019 Jul 03.
    PMID: 31278947 DOI: 10.1016/j.lfs.2019.116633
    AIMS: The compound 8-prenylnaringenin (8-PN) is a prenylflavonoid that can be isolated from hops and beer and has anti-cancer properties against breast cancer. The aim of this study is to investigate the anti-proliferative and apoptotic activities of 8-PN against human colon cancer HCT-116 cells.

    MAIN METHODS: Colon cancer HCT-116 cells were treated with 8-PN and subjected to MTT and acridine orange/propidium iodide (AO/PI) staining to investigate the cytotoxicity of 8-PN. Arrest of the cells at different phases of cell cycle was monitored in the presence of 8-PN. Moreover, the apoptotic effects of 8-PN was assessed via annexin V and caspase activity assays and compared to the untreated cells.

    KEY FINDINGS: The findings showed that 8-PN revealed strong inhibitory effect against HCT-116 cells with an IC50 value of 23.83 ± 2.9 μg/ml after 48 h. However, at similar concentrations and experimental time-points, the compound did not show cytotoxic effect to non-cancerous colon cells (CCD-41). Annexin-V assay indicates that 38.5% and 14.4% of HCT-116 cells had entered early and late stages of apoptosis, respectively after exposure of the cells to 8-PN for 48 h. Caspase activity assay illustrates that apoptosis is activated through both intrinsic and extrinsic pathways. Moreover, flow cytometry cell cycle results indicate that treatment with 8-PN significantly arrested the HCT-116 cells at G0/G1 phase.

    SIGNIFICANCE: These findings reveal that 8-PN has anti-proliferative activity against HCT-116 colon cancer cells via induction of intrinsic and extrinsic pathway-mediated apoptosis. Further investigations should be carried out to unravel the mechanistic pathways underlying these activities.

  17. Lim SYM, Alshagga MA, Alshawsh MA, Ong CE, Pan Y
    Drug Metab Pers Ther, 2021 Aug 17;37(1).
    PMID: 35146975 DOI: 10.1515/dmpt-2021-1000196
    OBJECTIVES: Khat, a natural amphetamine-like psychostimulant plant, are widely consumed globally. Concurrent intake of khat and xenobiotics may lead to herb-drug interactions and adverse drug reactions (ADRs). This study is a continuation of our previous study, targeted to evaluate the in vitro inhibitory effects of khat ethanol extract (KEE) on human cytochrome (CYP) 1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5, major human drug metabolizing enzymes.

    METHODS: In vitro fluorescence enzyme assays were employed to assess CYPs inhibition with the presence and absence of various KEE concentrations.

    RESULTS: KEE reversibly inhibited CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 but not CYP1A2 with IC50 values of 25.5, 99, 4.5, 21, 27, 17, and 10 μg/mL respectively. No irreversible inhibition of KEE on all the eight CYPs were identified. The Ki values of CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were 20.9, 85, 4.8, 18.3, 59.3, 3, and 21.7 μg/mL, respectively. KEE inhibited CYP2B6 via competitive or mixed inhibition; CYP2E1 via un-competitive or mixed inhibition; while CYP2A6, CYP2C8, CYP2C19, CYP2J2 and CYP3A5 via non-competitive or mixed inhibition.

    CONCLUSIONS: Caution should be taken by khat users who are on medications metabolized by CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2, and CYP3A5.

  18. Lim SYM, Alshagga M, Kong C, Alshawsh MA, Alshehade SA, Pan Y
    Arch Toxicol, 2022 12;96(12):3163-3174.
    PMID: 36175686 DOI: 10.1007/s00204-022-03382-3
    With more than 80 cytochrome P450 (CYP) encoding genes found in the nematode Caenorhabditis elegans (C. elegans), the cyp35 genes are one of the important genes involved in many biological processes such as fatty acid synthesis and storage, xenobiotic stress response, dauer and eggshell formation, and xenobiotic metabolism. The C. elegans CYP35 subfamily consisted of A, B, C, and D, which have the closest homolog to human CYP2 family. C. elegans homologs could answer part of the hunt for human disease genes. This review aims to provide an overview of CYP35 in C. elegans and their human homologs, to explore the roles of CYP35 in various C. elegans biological processes, and how the genes of cyp35 upregulation or downregulation are influenced by biological processes, upon exposure to xenobiotics or changes in diet and environment. The C. elegans CYP35 gene expression could be upregulated by heavy metals, pesticides, anti-parasitic and anti-chemotherapeutic agents, polycyclic aromatic hydrocarbons (PAHs), nanoparticles, drugs, and organic chemical compounds. Among the cyp35 genes, cyp-35A2 is involved in most of the C. elegans biological processes regulation. Further venture of cyp35 genes, the closest homolog of CYP2 which is the largest family of human CYPs, may have the power to locate cyps gene targets, discovery of novel therapeutic strategies, and possibly a successful medical regime to combat obesity, cancers, and cyps gene-related diseases.
  19. Dikeocha IJ, Al-Kabsi AM, Eid EEM, Hussin S, Alshawsh MA
    Nutr Rev, 2021 Dec 08;80(1):22-49.
    PMID: 34027974 DOI: 10.1093/nutrit/nuab006
    CONTEXT: Colorectal cancer (CRC) is a leading cause of cancer deaths. Recently, much attention has been given to the microbiome and probiotics as preventive and therapeutic approaches to CRC and the mechanisms involved.

    OBJECTIVES: To interpret the findings of randomized controlled trials (RCTs) of probiotics relative to patients with CRC and to outline challenges of and future directions for using probiotics in the management and prevention of CRC.

    DATA SOURCES: Web of Science, PubMed, ProQuest, Wile,y and Scopus databases were searched systematically from January 17-20, 2020, in accordance with PRISMA guidelines.

    STUDY SELECTION: Primacy RCTs that reported the effects of administration to patients with CRC of a probiotic vs a placebo were eligible to be included.

    DATA EXTRACTION: The studies were screened and selected independently by 2 authors on the basis of prespecified inclusion and exclusion criteria. The data extraction and risk-of-bias assessment were also performed independently by 2 authors.

    RESULTS: A total of 23 RCTs were eligible for inclusion. Probiotics supplementation in patients with CRC improved their quality of life, enhanced gut microbiota diversity, reduced postoperative infection complications, and inhibited pro-inflammatory cytokine production. The use of certain probiotics in patients with CRC also reduced the side effects of chemotherapy, improved the outcomes of surgery, shortened hospital stays, and decreased the risk of death. Bifidobacteria and Lactobacillus were the common probiotics used across all studies.

    CONCLUSION: Probiotics have beneficial effects in patients with CRC regardless of the stage of cancer. There is an opportunity for probiotics to be used in mainstream health care as a therapy in the fight against CRC, especially in early stages; however, larger clinical trialsof selected or a cocktail of probiotics are needed to confirm the efficacy, dosage, and interactions with chemotherapeutics agents.

    SYSTEMATIC REVIEW REGISTRATION: PROSPERO registration no. CRD42020166865.

  20. Lim SYM, Loo JSE, Alshagga M, Alshawsh MA, Ong CE, Pan Y
    Toxicol Rep, 2022;9:759-768.
    PMID: 36518400 DOI: 10.1016/j.toxrep.2022.03.040
    Cathinone is the psychostimulatory major active ingredient of khat (Catha edulis Forsk) and are often co-abused with alcohols and polydrugs. With the increased consumption of khat and cathinones on a global scale, efforts should be channelled into understanding and minimising the excruciating effects of possible khat-drug interactions. This study aimed to determine the in vitro inhibitory effects of cathinone on CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 and the in silico identification of their type of interactions and residues involved. The activities of CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2E1, CYP2J2 and CYP3A5 were examined by fluorescence based assays using recombinant cDNA-expressed human CYPs in Vivid® P450 screening kits. Cathinone reversibly inhibited CYP1A2, CYP2A6 and CYP3A5 via competitive, uncompetitive and noncompetitive modes with inhibition constant (Ki) values of 57.12, 13.75 and 23.57 µM respectively. Cathinone showed negligible inhibitory effects on CYP2B6, CYP2C8, CYP2C19, CYP2E1 and CYP2J2. Cathinone showed negligible time dependent inhibition on all 8 CYPs. Docking studies was performed on cathinone with CYP1A2, CYP2A6 and CYP3A5 following their inhibition in vitro. Cathinone is bound to a few key amino acid residues in the active sites while π-π interactions are formed in aromatic clusters of CYP1A2 and CYP3A5. These findings offer valuable reference for the use of cathinones and khat when combined with therapeutic drugs that are metabolised by CYP enzymes especially patients on medications metabolised by CYP1A2, CYP2A6 and CYP3A5.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links