MATERIALS AND METHODS: A total of 175 subjects comprising 84 patients and 91 healthy individuals were recruited. Multiplex PCR was optimized to co-amplify DYS388, DYS435, DYS437, and DYS439 loci. All samples were genotyped for alleles of four DYS loci using a Genetic Analysis System.
RESULTS: Of all DYS loci, allele 10 (A) of DYS388 had a significantly lower incidence of disease in compare with other alleles of this locus, while a higher incidence of disease was found among males who had either allele 12 (C) of DYS388 or allele 14 (E) of DYS439. Moreover, a total of 47 different haplotypes comprising different alleles of four DYS loci were found among the whole study samples, of which haplotypes AABC and CAAA showed a lower and higher frequency among cases than controls, respectively.
CONCLUSIONS: It is likely that Malaysian males who belong to Y-lineages with either allele 12 of DYS388, allele 14 of DYS439, or haplotype CAAA are more susceptible to develop prostate cancer, while those belonging to lineages with allele 10 of DYS388 or haplotype AABC are more resistant to the disease.
METHODOLOGY: This is a prospective study where patients (n=119) blood was tested for anti-HAVIgG and CYP3A4*18 polymorphism.
RESULTS: The overall anti-HAV seroprevalence was 88.2%. The etiology of CLD was hepatitis B in 96 patients (80.7%) and hepatitis C in 23 patients (19.3%). There was a significant increase in the age of the prevalence of this disease after 30 years of age (p=0.008). CYP3A4*18 polymorphism was detected in 3 (2.5%) of the patients with chronic liver disease. However, there was no significant association between CP3A4*18 mutation and anti-HAV serology.
CONCLUSIONS: Age was the most important factor in determining anti-HAV positivity. It is concluded that CYP3A4*18 genetic polymorphism does not play a main role in influencing the seroprevalence of anti-hepatitis A among chronic viral hepatitis B and C liver disease patients.
METHODS: Blood samples from 78 knowlesi malaria patients were used. Forty-eight of the samples were from Peninsular Malaysia, and 30 were from Malaysia Borneo. The genomic DNA of the samples was extracted and used as template for the PCR amplification of the PkγRII. The PCR product was cloned and sequenced. The sequences obtained were analysed for genetic diversity and natural selection using MEGA6 and DnaSP (version 5.10.00) programmes. Genetic differentiation between the PkγRII of Peninsular Malaysia and North Borneo isolates was estimated using the Wright's FST fixation index in DnaSP (version 5.10.00). Haplotype analysis was carried out using the Median-Joining approach in NETWORK (version 4.6.1.3).
RESULTS: A total of 78 PkγRII sequences was obtained. Comparative analysis showed that the PkγRII have similar range of haplotype (Hd) and nucleotide diversity (π) with that of PkDBPαRII. Other similarities between PkγRII and PkDBPαRII include undergoing purifying (negative) selection, geographical clustering of haplotypes, and high inter-population genetic differentiation (FST index). The main differences between PkγRII and PkDBPαRII include length polymorphism and no departure from neutrality (as measured by Tajima's D statistics) in the PkγRII.
CONCLUSION: Despite the biological difference between PkγRII and PkDBPαRII, both generally have similar genetic diversity level, natural selection, geographical haplotype clustering and inter-population genetic differentiation index.
METHODS: Male subjects included in this study were drawn from those undergoing routine annual medical examinations offered by their employers. Venous blood was obtained from these patients after an overnight fast and from which genomic DNA was extracted. Genotyping was carried out by polymerase chain reaction (PCR) followed by digestion with restriction enzyme NciI. Personal and family medical history of the subjects were also taken.
RESULTS: The genotype distribution of the individuals studied was in accordance to a population at Hardy Weinberg equilibrium. The frequency of the PI(A2) allele was 0.1, 0.01 and 0.01 in the Indians, Malays and Chinese, respectively. The differences in frequencies of the PI(A2) variant are significant among different ethnic groups (P<0.001 for Indians vs. Chinese and Indians vs. Malays).
CONCLUSIONS: We observed a significantly higher frequency of the PI(A2) allele among Indians relative to the Chinese and Malays in Singapore. The effect of this genotype may partially explain the higher rate of ischaemic heart disease seen among Indians compared to the Chinese and Malay ethnic groups.