This study investigates the characteristics of an antioxidant cream made from the methanol extract of Piper sarmentosum leaves, which is locally known as the wild betel or pokok kadok in Malay. The secondary metabolites of the leaves were subjected to phytochemical tests to detect the presence of natural compounds. Antioxidant activity was described by its total phenolic content (TPC) and total flavonoid content (TFC), which was assessed by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. A phase diagram was constructed to find a possible region to formulate an antioxidant cream. In phytochemical screening, the methanolic extract showed positive presence of alkaloids, flavonoids, steroids, terpenoids and tannins. In quantitative analysis of antioxidative components, besides having significantly higher TFC content compared with quercetin (P
A study was conducted on the chemical and biological properties of three different species of Mangifera i.e. Mangifera pajang, M. indica L., and M. kemanga leaves obtained from Pitas, Sabah. The aims of this study were to determine the presence of secondary metabolites as well as the antioxidative activities especially the catalase (CAT) and guiacol peroxidase specific activities (gPOD) in the leaves part of these three species. The extraction of these samples was carried out using three different polarities of solvents: hexane, ethyl acetate, and methanol. The total percentage of the crude extract of is 7.30% for M. pajang, 12.87% for M. indica and 7.98% for M. kemanga. Phytochemical screening was performed with various tests for each of the crude extracts. The results showed that these three species gave positive results for alkaloids, saponins, flavonoids, phenols, carbohydrates, phytosterols, and tannins metabolites. Based on the tests, CAT specific activities were significantly higher in the leaves of M. pajang with 4.35 ± 1.18 units/mg protein compared to M. indica L. and M. kemanga. The guaiacol peroxidase (gPOD) specific activities showed that M. indica L. has the highest activity with the value of 0.0047 ± 0.0004 units/mg protein.
Introduction: Manilkara zapota (L.) P. Royen or sapodilla is a fruit-bearing tree that has been cultivated mainly in tropical areas including Mexico and South East Asia. The fruits and the other parts of M. zapota plant have been used since ages ago for various medicinal purposes. However, the data on the antioxidant properties of various parts of M. zapota is limited. Therefore, we aimed to measure the content and capacity of antioxidants in various M. zapota plant parts and also to screen the phytoconstituents present in the part with the highest antioxidant content and capacity. Methods: The in vitro antioxidant evaluation including the content of total phenolic (TPC) and total flavonoids (TFC) as well as β-carotene bleaching and 1-diphenyl-2-picrylhydrazyl (DPPH) scavenging ability of the leaves, seeds, flesh, and peels of M. zapota extracted by aqueous and ethanol were determined. The plant part that exhibited the highest TPC, TFC, and antioxidant capacity was selected for phytoconstituents identification using liq- uid chromatography mass spectrometry. Results: M. zapota leaves aqueous extract exhibited the highest TPC, TFC, and antioxidant capacities and therefore selected for phytoconstituents identification. Our study provide additional data in which a total of 39 phytoconstituents have been identified in the M. zapota leaves including m-coumaric acid, quinic acid, robinetinidol-4alpha-ol, isoorientin 6’’-O-caffeate, apocynin A, and C16 Sphinganine. Conclusion: Thus, our study revealed that M. zapota leaves aqueous extract has potential as a promising naturally-occurring an- tioxidant candidate which could be useful for medicinal and nutritional functions.
Clitoria ternatea is a herbaceous plant with many health benefits. Extraction is crucial to obtain its bioactive components which contribute to its antioxidant properties. Therefore, this study was conducted to find an optimum extraction condition of C. ternatea flower on total phenolic content (TPC) and antioxidant activity (2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical-scavenging activity) as well as to determine its total flavonoid content (TFC) and anthocyanin content based on the optimum extraction condition generated by Response Surface Methodology (RSM)-Design Expert 7.1.5. TPC, TFC and total anthocyanin of C. ternatea were conducted by Folin Ciocalteu (FC), calorimetric assay and pH differential method, respectively. The ranges of selected independent variables were ethanol concentration (30°C-90% v/v), time (60-120 min) and temperature (30°C-70°C). The optimum extraction condition was obtained at 39.62% v/v ethanol concentration, 90 min and 44.24°C. However, these values were slightly adjusted according to the convenience of equipment to operate in which ethanol concentration was adjusted to 37% v/v, time remain at 90 min and temperature at 45°C. The predicted values of TPC and DPPH radical scavenging activity were 41.60 mg GAE/g dry samples and 68.12% inhibition and were experimentally verified to be 41.17 ± 0.5 mg GAE/g dry samples and 63.53 ± 0.95% inhibition of TPC and DPPH radical scavenging activity respectively. This result has showed RSM can optimise TPC and radical scavenging activity of C. ternatea. Upon the optimum condition, the TFC determined was 187.05 ± 3.18 mg quercetin/g dried sample which was higher than TPC and the total anthocyanin content was 28.60 ± 0.04 mg/L. Hence, the extractable phenolic, flavonoid and anthocyanin compounds indicated that C. ternatea is a good source of natural antioxidant.
Conventional and modern cancer treatment were reported to manifest adverse effects to the patients. More researches were conducted to search for selective cytotoxic agent of plant natural product on cancer cells. The presences of wide range phytochemicals in Quercus infectoria (QI) extract have been implicated with the cytotoxic effect against various types of cancer cell which remain undiscovered. This present study aimed to evaluate cytotoxic effect of QI extracts on selected human cancer cells and then, the most potent extract was further analysed for general phytochemical constituents. QI galls were extracted successively with n-hexane, ethyl acetate and methanol yielded three main extracts; n-hexane (QIH), ethyl acetate (QIEA) and methanol (QIM), respectively. The most potent extract was qualitatively analysed for the present of tannin, alkaloids, glycosides, saponins, terpenoids, flavonoids and phenolic compounds. Next, the extracts were tested to determine the cytotoxic activity against cervical cancer cells (HeLa), breast cancer cells (MDA-MB-231) and liver cancer cells (Hep G2) using MTT assay. Cytotoxic activity of QI extracts against normal fibroblast (L929) cell line was also evaluated to determine the cytoselective property. Meanwhile, DMSO-treated cells served as negative control while cisplatin-treated cells served as positive control. The most potent extract then chosen to be further investigated for DNA fragmentation as hallmark of apoptosis using Hoechst staining. Qualitative phytochemical analysis revealed the presence of tannin, alkaloids, glycosides, saponins, terpenoids, flavonoids and phenolic compounds. QIEA extract exhibited the most potent cytotoxic activity against HeLa cells with (IC50 value = 6.33 ± 0.33 μg/mL) and showed cytoselective property against L929 cells. DNA fragmentation revealed QIEA induced apoptosis in the treated cells. The richness of phytochemical constituents in QIEA extract might contribute to the potency of cytotoxic activity towards HeLa cells.
Trypanosoma evansi, the causative agent of "surra", infects many species of wild and domestic animals worldwide. In the current study, the aqueous and ethanolic extracts of six medicinal plants, namely, Aquilaria malaccensis, Derris elliptica, Garcinia hombroniana, Goniothalamus umbrosus, Nigella sativa, and Strobilanthes crispus were screened in vitro for activity against T. evansi. The cytotoxic activity of the extracts was evaluated on green monkey kidney (Vero) cells using MTT-cell proliferation assay. The median inhibitory concentrations (IC50) of the extracts ranged between 2.30 and 800.97 μg/ml and the median cytotoxic concentrations (CC50) ranged between 29.10 μg/ml and 14.53 mg/ml. The aqueous extract of G. hombroniana exhibited the highest selectivity index (SI) value of 616.36, followed by A. malaccensis aqueous extract (47.38). Phytochemical screening of the G. hombroniana aqueous extract revealed the presence of flavonoids, phenols, tannins, and saponins. It is demonstrated here that the aqueous extract of G. hombroniana has potential antitrypanosomal activity with a high SI, and may be considered as a potential source for the development of new antitrypanosomal compounds.
The mode of action and activities of guava leaf extracts against various food pathogens were studied. The killing kinetics, viability and cell leakage of Kocuria rhizophila, Salmonella typhimurium, Listeria monocytogenes and Escherichia coli O157:H7, measured after exposure to guava methanolic extracts (GME) revealed a significantly higher (p≤0.05) release of bacterial nucleic acids, K+ ions and protein than that of untreated microbes, indicating disruption of the bacterial membrane. GME caused a significantly higher (p≤0.05) release of RNA in gramnegatives compared to gram-positives. GME caused a relatively small but significant release of pyrines and pyrimidines in all organisms investigated. GME probably disrupted the integrity of the Gram-negative microorganism lipopolysaccharide (LPS) layer. Unlike all the other microorganisms tested, E. coli O157:H7, demonstrated the lowest protein leakage, the highest K+ leakage, the highest pyrines and pyrimidines leakage within the first 10 min of extract exposure, but the lowest after 30 minutes, which may indicate their good homeostasis ability or adaptability. Understanding the mode of action of this flavonoid rich guava leaf extract, would help develop it as an alternative biodegradable and safe, antimicrobial for food and medicine, and as a by-product of the guava industry.
In the present study, Malaysian Zea mays hair extracts are screened for the occurrence of bioactive compounds. The results positively showed the present of flavonoids, saponin, tannins, phlobatannins, phenols, alkaloids and cardiac glycosides in both aqueous and methanolic extract of Zea mays hair. Terpenoid compounds however present only in the methanolic extract sample. In addition, the total phenolic content (TPC) in aqueous extract was significantly higher (42.71 + 0.87 µg/g of tannic acid equivalent (TAE)) compared to methanolic extract (40.38 + 1.10 µg/g of TAE). The findings suggested that phytochemicals present in Zea mays hair are potentially beneficial as therapeutic and antioxidative agents in pharmaceuticals, food and other related industries.
This study was undertaken to evaluate the potential of fruit waste materials as source of natural antioxidant. The fruit peels including mango, guava and papaya peel were used in this study. The total phenolic content (TPC) was determined by Folin-Ciocalteu assay while antioxidant activities were determined by using ferric reducing antioxidant power (FRAP), 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, ferric thiocynate (FTC) and thiobarbituric acid (TBA) assays. These antioxidant activities were compared to synthetic antioxidants, BHA/BHT combination and ascorbic acid. The results demonstrated that TPC ranged from 3.23 to 15.84 g GAE/100 g extract. Mango peels extract exhibited highest TPC compared to guava peel and papaya peel extract. In the FRAP assay, mango peel extract at 200 ppm, guava peel extract at 400 ppm and papaya peel extract at 1200 ppm, exhibited reducing power comparable to the permissible amount of BHA/BHT at 200 ppm. At concentration of 250 μg/ml, the DPPH radical scavenging activity of extracts and standards decreased significantly in the order of mango peel extract > guava peel extract > BHA/BHT > ascorbic acid > papaya peel extract. For the FTC assay, the antioxidant activity of mango peel extract was significantly higher than ascorbic acid, guava peel and papaya peel extract but lower than BHA/BHT while in the TBA assay, percentage inhibition of BHA/BHT and ascorbic acid were found to be higher than fruit peel extracts. The quantitative analysis for flavonoids showed the presence of catechin, epicatechin and kaempferol in the peel extracts.
This study evaluated and compared the antioxidant capacity between freshly prepared and lactic fermented Malaysian herbal teas. Herbal teas are rich in antioxidants. Fermentation has been known to be the oldest and cost effective method with the ability to preserve or improve food nutritional qualities. Information on the antioxidant capacity of lactic fermented food or beverage is still lacking. Hence, the objective of this study is to determine the changes in the antioxidant properties of Malaysian herbal teas after being subjected to lactic fermentation. Commercially available local herbal teas were used for this study. Herbal teas such as “Allspice”, “Scaphium”, “Gora” and “Cinnamon” were purchased from the local store in Malaysia and were subjected to 24-hour lactic fermentation. Lactic fermented herbal teas were analyzed for their total phenolic, total flavonoid and antioxidant properties via DPPH, FRAP, and β-carotene linoleate bleaching assay. All lactic fermented herbal teas exhibited higher phenolic contents, flavonoid contents and antioxidant properties compared to the freshly-prepared herbal teas with majority showing significant changes (p < 0.05) in FRAP and β-carotene bleaching assay. Lactic fermented herbal teas also showed an increase in antioxidant capacity in DPPH assay, however non-significant changes were observed.
The present work sought to investigate the nutritional composition and phytochemical properties of red pitaya (Hylocereus polyrhizus) juices from Malaysia and Australia and to determine the optimum ethanol concentration (in the range of 0 – 100% ethanol) for the extraction of phenolic, flavonoid and betacyanin contents. The predominant macronutrient in red pitaya juice was carbohydrate while potassium and vitamin A were the major mineral and vitamin content. Red pitaya juice from Malaysia achieved optimal total phenolic content at 20% of ethanol (20 mL ethanol in 100 mL water, v/v); total flavonoid content at 60% (v/v); and betacyanin content at 0% (v/v). Red pitaya juice from Australia achieved the maximum total phenolic content at 60% (v/v); total flavonoid content at 20% (v/v); and betacyanin content at 80% (v/v). Nutritional composition and the phytochemical properties of red pitaya in Malaysia and Australia were significantly different suggested the role of environmental factors like soil and climate on the phytochemical properties of red pitaya.
The peels of pomelo contribute 30% of the fruit weight and yet it has been dump without recognizing the possible nutritional value of the peels. Study has been carried out to identify flavonoid content of the peels and analysed the activity of the flavonoid towards inhibition of lipid peroxidation. Optimization of flavonoid extraction was conducted using aqueous solvent (methanol and ethanol), extraction time (1-3 h) and extraction temperature (50°C-80°) via water bath extraction. The total content of flavonoids was quantitatively determined by using coloration methods with chromogenic system of NaNO2–Al (NO3)3–NaOH and and it was found that the extraction at 65ºC for 2 h in aqueous ethanol was the optimized condition for maximum flavonoids i.e. 190.42mg/L. A spectrophometric analysis was performed to evaluate flavonoid activity towards lipid peroxidation in the fish tissue. There was reduction in Peroxide value (PV) indicated the inhibition of lipid peroxidation in fish treated with pomelo peel as evidence of concurrency of positive flavonoid activity.
Clinacanthus nutans (Burm. F.) Lindau or locally known in Sabah, Malaysia as ‘Sabah Snake Grass’ has been ethnobotanically used to treat various diseases in Asian countries. This study was conducted to determine the total phenolics content (TPC), flavonoids content (TFC) and antioxidant activity of herbal teas developed from C. nutans leaves with different drying techniques (microwave-oven dried and freeze dried) and infusion time (1, 2, 5, 10, 15 and 20 min). Ferric reducing/antioxidant power (FRAP) assay, 2,2’-azino-bis(3-ethylbenzothiazoline- 6-sulphonic acid (ABTS) and 2, 2-diphenyl-1-pycryl-hydrazyl (DPPH) free radical scavenging assays were used to investigate the antioxidant capacity. The highest TPC of herbal tea was observed in 20 min infusion of unfermented microwave-oven dried leaves (177.80 ± 19.10 mg TAE/L), while the highest TFC was observed in 10 min infusion of fermented microwave-oven dried leaves (22.13 ± 1.53 mg CE/L). Short infusion times from 5 min to 15 min were able to extract high amount of phenolics compounds. Unfermented tea contained higher TPC content (P < 0.05) as compared to fermented tea, while, TFC showed no significant difference between both types. Freeze dried infusion shows no significant difference (P > 0.05) as compared to microwave-oven dried for TPC, TFC and antioxidant capacity. Moderate and low correlation was observed between TPC and FRAP values (r = 0.507) and between TFC and ABTS values (r = 0.256). Preparation of C. nutans herbal tea as potential natural antioxidant source can be used as a basic reference for future research on the dietary intake of these herbal teas.
The effect of different drying methods on the degradation of flavonoids in Centella asiatica was evaluated. C. asiatica leaf, root and petiole were dried using air-oven, vacuum oven and freeze drier. Flavonoid was determined utilizing reverse-phase high performance liquid chromatography (RP-HPLC). Results of the study revealed the presence of high concentration of flavonoids in C. asiatica leaf, root and petiole, which include, naringin (4688.8 ± 69 μg/100 g, 3561.3 ± 205 μg/ 100 g, and 978.3 ± 96 μg/ 100 g), rutin (905.6 ± 123 μg/ 100 g, 756.07 ± 95 μg/ 100 g, and 557.25 ± 58 μg/ 100 g), quercetin (3501.1 ± 107 μg/ 100 g, 1086.31 ± 90 μg/ 100 g, and 947.63 ± 83 μg/ 100 g) and catechin (915.87 ± 6.01 μg/ 100 g, 400.6 ± 67 μg/ 100 g, and 250.56 ± 18 μg/ 100g). Luteolin, kaempferol and apigenin on the other hand, were inconsistently present in some parts of C. asiatica. Air-oven treatment resulted in the highest total flavonoids degradation followed by vacuum oven and freeze dried with percent degradation of 97%, 87.6% and 73%, respectively. Catechin and rutin were found to be the most stable flavonoids with percent degradation up to 35%, 66% and 76% for freeze dried, vacuum oven and air oven, respectively.
Murraya paniculata (Linn) Jack (Orange Jasmine), known as "Kemuning Putih" in Malaysia, has been widely used as food flavor additive in cuisine by local residences. This is due to the strong fragrances of the leaves which make it suitable to be used in Indian and Malay dishes. Besides as a flavoring, leaves, branches, stem barks and roots of the plant are used in folk medicine to treat dysentery and morning sickness. Flowers of the plants are used in cosmetics. Since 1970’s, flavonoids and coumarins were isolated from Murraya paniculata, but no further bioactivity has been tested from the isolated compounds. The aim of this paper is to review and update the research related to chemical constituents and bioactivities of Murraya paniculata (L) Jack.
This study aimed to determine and compare antioxidant components and antioxidant capacity in different parts (skin, pulp, mace and seed) of nutmeg. Freeze dried samples were extracted using 80% methanol, while Folin-Ciocalteu assay was employed to determine total phenolic content, aluminium chloride assay was applied to determine total flavonoid content and ascorbic acid was assessed by titrimetric method. Antioxidant activities were evaluated by ferric reducing antioxidant power and trolox equivalent antioxidant capacity (TEAC) assays. Results revealed that nutmeg seed contained the highest TPC followed by mace, skin and pulp. Similar observation was also found for TFC. The highest ascorbic acid content was found in nutmeg mace, while the lowest was in its pulp. For antioxidant activity, nutmeg seed possessed the highest FRAP and TEAC values, while nutmeg pulp had the lowest as compared to other parts. Phenolic compounds in nutmeg samples have exhibited strong correlation with antioxidant capacity. Therefore, nutmeg is a potential functional food with high antioxidants, especially nutmeg seed. Phenolic compounds in nutmeg samples have exhibited strong correlation with antioxidant capacity. Therefore, nutmeg is a potential functional food with high antioxidants, especially nutmeg seed.
Literature review suggests that polyphenols in particular flavonoids, are beneficial for mental health during aging process. This review examines the effect of consumption of all polyphenols groups on mental health and cognitive status during aging process. The keywords searched were “mental health,” “depression,” “anxiety,” “stress” and “cognitive” combined with “dietary,” and “polyphenols.” The databases including PubMed, Web of Science and CAB Abstracts were searched for a period of 10 years. A total of 11 studies were identifi ed to fulfi ll the inclusion criteria. From this review, polyphenols may confer beneficial effects towards mental health, in particular the decline in cognitive functions during aging process, however, some studies showed contradictory results. Polyphenols have been proven to improve language and verbal ability, which is among the main vulnerable aspects in cognitive decline in pathological brain aging. In contrast, polyphenols intake did not seem to affect executive functioning. The effects of polyphenols towards cognitive status were more prominent among the elderly as compared to young and middle-aged adults. This review also shows that flavonoids is the main type of polyphenols that confer positive effects towards cognitive status during aging. This review provides evidence that consumption of polyphenols may lead to cognitive and mental health benefits. Further clinical trials involving human subjects are required with carefully designed methodology to elucidate the potential mechanisms underlying the relationship between polyphenols consumption and improvement in cognitive and mental health status.
Bioactive compounds are one of the natural products used especially for medicinal, pharmaceutical and food application. Increasing research performed on the extraction, isolation and identification of bioactive compounds, however non to date has explored on the identification of flavonoids classes. Therefore, this study was focused on the development of algorithm for rapid identification of flavonoids classes which are flavanone, flavone and flavonol and also their derivatives. Fourier Transform Infrared (FTIR) spectroscopy coupled with multivariate statistical data analysis, which is Principal Component Analysis (PCA) was utilized. The results exhibited that few significant wavenumber range provides the identification and characterization of the flavonoids classes based on PCA algorithm. The study concluded that FTIR coupled with PCA analysis can be used as a molecular fingerprint for rapid identification of flavonoids.
This study investigated the recovery of phytochemical antioxidants in Dacryodes rostrata fruit using different extraction solvents. The effects of solvent of varying polarities with sequential extraction method on the recovery of phenolics, flavonoids, carotenoids and anthocyanins from different parts of the fruit (seed, pulp and peel) were determined. Their antioxidant activities were further determined using DPPH radical, ferric reducing antioxidant power (FRAP), hydroxyl radical scavenging, superoxide anion radical scavenging and phosphomolybdenum method. Dacryodes Rostrata seed had the highest total phenolic content with 50% ethanol as the most efficient extraction solvent. The highest total flavonoid content was obtained in ethyl acetate extract of fruit pulp, whereas peel extracted with hexane and 50% ethanol was the highest in total carotenoid content and total anthocyanin content, respectively. The seed extracted with 50% ethanol exhibited the strongest DPPH radical scavenging activity. Iron chelating activity measured by FRAP assay was the best in seed extracts, particularly in those polar extracts derived from water and 50% ethanol. Antioxidant activities of 50% ethanol extract of D. rostrata seed was the highest when determined by FRAP and phosphomolydenum assays. However, the influence of extraction solvents is not distinctly shown by hydroxyl radical and superoxide anion radical scavenging activities. This is the first report on the effect of various extraction solvents on the recovery of phytochemicals in D. rostrata fruit parts and the seed of D. rostrata is a potential source of polar antioxidants.
This work was carried out for determining antimicrobial activity of Pistacia chinensis leaves
methanol extract and identifying the chemical composition of the plant extract. Methanol extract
was tested for antimicrobial activity using disc-diffusion assay and the extract was fractionated
on silica gel column chromatography for the isolation of the bio-active constituents. The leaves
extract of P. chinensis showed a significant antimicrobial effect, it strongly inhibited the growth
of the test bacteria and yeast studied. Chromatograpic separation of the methanol extract of
P. chinensis leaves has led to the isolation and characterization of β-sitosterol, luepol, and
six flavonoids, quercetin, myricetin, quercetin 3-O-α-rhamnoside, quercetin 3-O-β-glucoside,
myricetin 3-O-α-rhamnoside and myricetin 3-O-β-glucuronide using various chromatographic
procedures and the interpretation of spectral data in comparison with already existing data
reported in the literature. The results presented here may suggest that the leaves extract of P.
chinensis possess antimicrobial properties, and therefore, can be used as natural preservative
ingredients in food and/or pharmaceuticals.