METHODOLOGY/PRINCIPAL FINDINGS: We used 13 nuclear microsatellite loci (on 911 individuals) and mitochondrial COI sequences to gain a better understanding of the historical and contemporary movements of Ae. albopictus in the Indo-Pacific region and to characterize its population structure. Approximate Bayesian computation (ABC) was employed to test competing historical routes of invasion of Ae. albopictus within the Southeast (SE) Asian/Australasian region. Our ABC results show that Ae. albopictus was most likely introduced to New Guinea via mainland Southeast Asia, before colonizing the Solomon Islands via either Papua New Guinea or SE Asia. The analysis also supported that the recent incursion into northern Australia's Torres Strait Islands was seeded chiefly from Indonesia. For the first time documented in this invasive species, we provide evidence of a recently colonized population (the Torres Strait Islands) that has undergone rapid temporal changes in its genetic makeup, which could be the result of genetic drift or represent a secondary invasion from an unknown source.
CONCLUSIONS/SIGNIFICANCE: There appears to be high spatial genetic structure and high gene flow between some geographically distant populations. The species' genetic structure in the region tends to favour a dispersal pattern driven mostly by human movements. Importantly, this study provides a more widespread sampling distribution of the species' native range, revealing more spatial population structure than previously shown. Additionally, we present the most probable invasion history of this species in the Australasian region using ABC analysis.
METHODS: Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing.
RESULTS: Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01).
CONCLUSION: For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.
METHODS: Genome sequencing of RCMV ALL-03 was carried out in order to identify the open reading frame (ORF), homology comparison of ORF with other strains of CMV, phylogenetic analysis, classifying ORF with its corresponding conserved genes, and determination of functional proteins and grouping of gene families in order to obtain fundamental knowledge of the genome.
RESULTS: The present study revealed a total of 123 Coding DNA sequences (CDS) from RCMV ALL-03 with 37 conserved ORF domains as with all herpesvirus genomes. All the CDS possess similar function with RCMV-England followed by RCMV-Berlin, RCMV-Maastricht, and Human CMV. The phylogenetic analysis of RCMV ALL-03 based on conserving genes of herpes virus showed that the Malaysian RCMV isolate is closest to RCMV-English and RCMV-Berlin strains, with 99% and 97% homology, respectively. Similarly, it also demonstrated an evolutionary relationship between RCMV ALL-03 and other strains of herpesviruses from all the three subfamilies. Interestingly, betaherpesvirus subfamily, which has been shown to be more closely related with gammaherpesviruses as compared to alphaherpesviruses, shares some of the functional ORFs. In addition, the arrangement of gene blocks for RCMV ALL-03, which was conserved among herpesvirus family members was also observed in the RCMV ALL-03 genome.
CONCLUSION: Genomic analysis of RCMV ALL-03 provided an overall picture of the whole genome organization and it served as a good platform for further understanding on the divergence in the family of Herpesviridae.
MATERIALS AND METHODS: Biofilm yield of 32 Helicobacter pylori strains (standard strain and 31 clinical strains) were determined by crystal-violet assay and grouped into poor, moderate and good biofilm forming groups. Whole genome sequencing of these 32 clinical strains was performed on the Illumina MiSeq platform. Annotation and comparison of the differences between the genomic sequences were carried out using RAST (Rapid Annotation using Subsystem Technology) and SEED viewer. Genes identified were confirmed using PCR.
RESULTS: Genes identified to be associated with biofilm formation in H. pylori includes alpha (1,3)-fucosyltransferase, flagellar protein, 3 hypothetical proteins, outer membrane protein and a cag pathogenicity island protein. These genes play a role in bacterial motility, lipopolysaccharide (LPS) synthesis, Lewis antigen synthesis, adhesion and/or the type-IV secretion system (T4SS). Deletion of cagA and cagPAI confirmed that CagA and T4SS were involved in H. pylori biofilm formation.
CONCLUSIONS: Results from this study suggest that biofilm formation in H. pylori might be genetically determined and might be influenced by multiple genes. Good, moderate and poor biofilm forming strain might differ during the initiation of biofilm formation.
METHODS: Eleven full-length pkmsp1 sequences obtained from clinical isolates of Malaysia along with the H-strain were downloaded from the database for domain wise characterization of pkmsp1 gene. Additionally, 76 pkmsp-142 sequences from Thailand and Malaysia were downloaded from the database for intra and inter-population analysis. DnaSP 5.10 and MEGA 5.0 software were used to determine genetic diversity, polymorphism, haplotypes and natural selection. Genealogical relationships were determined using haplotype network tree in NETWORK software v5.0. Population genetic differentiation index (FST) of parasites were analysed using Arlequin v3.5.
RESULTS: Sequence analysis of 11 full-length pkmsp1 sequences along with the H-strain identified 477 (8.4%) polymorphic sites, of which 107 were singleton sites. The overall diversity observed in the full-length genes were high in comparison to its ortholog pvmsp1 and the 4 variable domains showed extensive size variations. The nucleotide diversity was low towards the pkmsp1-42 compared to the conserved domains. The 19 kDa domain was less diverse and completely conserved among isolates from Malaysian Borneo. The nucleotide diversity of isolates from Peninsular Malaysia and Thailand were higher than Malaysian Borneo. Network analysis of pkmsp1-42 haplotypes showed geographical clustering of the isolates from Malaysian Borneo and grouping of isolates from Peninsular Malaysia and Thailand. Population differentiation analysis indicated high FST values between parasite populations originating from Malaysian Borneo, Peninsular Malaysia and Thailand attributing to geographical distance. Moderate genetic differentiation was observed for parasite populations from Thailand and Peninsular Malaysia. Evidence of population expansion and purifying selection were observed in all conserved domains with strongest selection within the pkmsp1-42 domain.
CONCLUSIONS: This study is the first to report on inter country genetic diversity and population structure of P. knowlesi based on msp1. Strong evidence of negative selection was observed in the 42 kDa domain, indicating functional constrains. Geographical clustering of P. knowlesi and moderate to high genetic differentiation values between populations identified in this study highlights the importance of further evaluation using larger number of clinical samples from Southeast Asian countries.