METHODS: Pharmacokinetics of KKA was studied after intravenous and oral administration in SD rats using HPLC. Anti-angiogenic efficacy of KKA was investigated in rat aorta, human endothelial cells (EA.hy926) and nude mice implanted with matrigel.
RESULTS: Pharmacokinetic study revealed that KKA was readily absorbed into blood and stayed for a long time in the body with Tmax 2.89 ± 0.12 h, Cmax 7.24 ± 0.36 μg/mL and T1/2 1.46 ± 0.03 h. The pharmacological results showed that KKA significantly suppressed sprouting of microvessels in rat aorta with IC50 18.4 ± 4.2 μM and demonstrated remarkable inhibition of major endothelial functions such as migration, differentiation and VEGF expression in endothelial cells. Further, KKA significantly inhibited vascularization in matrigel plugs implanted in nude mice.
CONCLUSIONS: The results indicate that bioabsorption of KKA from oral route was considerably efficient with longer retention in body than compared to that of the intravenous route. Further, improved antiangiogenic activity of KKA was recorded which could probably be due to its increased solubility and bioavailability. The results revealed that KKA inhibits angiogenesis by suppressing endothelial functions and expression of VEGF.
METHODS: We conducted a case-control study comparing 25 patients with biopsy-proven LACR against 25 stable controls matched for age group, primary diagnosis and time post-transplant. IPV was calculated using coefficient of variance (CV) and mean absolute deviation (MAD) using tacrolimus levels in the preceding 12 months. We also assessed the percentage time for tacrolimus levels
METHODS: PEPT2 polymorphisms were screened from a cohort of 96 Chinese, 96 Malay and 96 Asian Indian subjects. Cephalexin (1000 mg, orally) pharmacokinetics was characterized in an additional 15 Chinese and 15 Asian Indian healthy subjects. These 30 subjects were subsequently genotyped for their PEPT2 polymorphisms.
RESULTS: In total, ten common single nucleotide polymorphisms (SNPs) were detected in the three populations, forming two PEPT2 haplotypes. There were significant ethnic differences in PEPT2 haplotype distribution: the frequencies of the *1 and *2 alleles were 0.307 and 0.693 in the Chinese population, 0.495 and 0.505 in the Malay population and 0.729 and 0.271 in Asian Indian population, respectively. The C (max) of cephalexin was significantly lower in the Chinese (29.80 +/- 4.09 microg ml(-1)) population than in the Asian Indian one (33.29 +/- 4.97 microg ml(-1); P = 0.045). This difference could be explained by the higher average body weight of the Chinese population. There was no other significant difference in cephalexin pharmacokinetics between either ethnic or PEPT2 genotype groups.
CONCLUSION: PEPT2 polymorphism distributions differ significantly between Chinese, Malay and Asian Indian populations. However, cephalexin pharmacokinetics is not meaningfully different between Chinese and Asian Indians. The association between the PEPT2 haplotype and cephalexin pharmacokinetics could not be confirmed, and future studies under better controlled conditions are needed.