Displaying publications 361 - 380 of 587 in total

Abstract:
Sort:
  1. Salim SA, Sukor R, Ismail MN, Selamat J
    Toxins (Basel), 2021 04 15;13(4).
    PMID: 33920815 DOI: 10.3390/toxins13040280
    Rice bran, a by-product of the rice milling process, has emerged as a functional food and being used in formulation of healthy food and drinks. However, rice bran is often contaminated with numerous mycotoxins. In this study, a method to simultaneous detection of aflatoxins (AFB1, AFB2, AFG1, and AFG2), ochratoxin A (OTA), deoxynivalenol (DON), fumonisins (FB1 and FB2), sterigmatocystin (STG), T-2 toxin, HT-2 toxin, diacetoxyscirpenol (DAS) and zearalenone (ZEA) in rice bran was developed, optimized and validated using dispersive liquid-liquid microextraction (DLLME) and liquid chromatography-tandem mass spectrometry (LC-MS/MS). In DLLME, using a solvent mixture of methanol/water (80:20, v/v) as the dispersive solvent and chloroform as the extraction solvent with the addition of 5% salt improved the extraction recoveries (63-120%). The developed method was further optimized using the response surface methodology (RSM) combined with Box-Behnken Design (BBD). Under the optimized experimental conditions, good linearity was obtained with a correlation coefficient (r2) ≥ 0.990 and a limit of detection (LOD) between 0.5 to 50 ng g-1. The recoveries ranged from 70.2% to 99.4% with an RSD below 1.28%. The proposed method was successfully applied to analyze multi-mycotoxin in 24 rice bran samples.
    Matched MeSH terms: Oryza/microbiology*
  2. Seow EK, Tan TC, Lee LK, Easa AM
    J Texture Stud, 2020 12;51(6):909-916.
    PMID: 32537814 DOI: 10.1111/jtxs.12544
    Hardening issue in starch-based products that arises during storage, is ascribed to the long-term starch retrogradation which involves the recrystallisation of amylopectin. Present study aimed to delay storage hardening with the addition of high diastase honey bee honey (HBH) and low diastase kelulut bee honey (KBH) into glutinous rice flour (GRF) gels. As compared to KBH, retardation of texture deterioration by HBH was more prominent as evidenced by the significantly (p 
    Matched MeSH terms: Oryza/chemistry*
  3. Tan BL, Norhaizan ME
    Biomed Res Int, 2017;2017:9017902.
    PMID: 28210630 DOI: 10.1155/2017/9017902
    Cancer is a significant global health concern affecting men and women worldwide. Although current chemopreventive drugs could inhibit the growth of cancer cells, they exert many adverse side effects. Dietary factor plays a crucial role in the management of cancers and has drawn the attention of researchers to be used as an option to combat this disease. Both in vitro and in vivo studies showed that rice and its by-products display encouraging results in the prevention of this disease. The mechanism of anticancer effect is suggested partly through potentiation of bioactive compounds like vitamin E, phytic acid, γ-aminobutyric acid (GABA), γ-oryzanol, and phenolics. Nevertheless, the bioactivity of rice and its by-products is still incompletely understood. In this review, we present the findings from a preclinical study both in in vitro and in animal experiments on the promising role of rice by-products with focus on cancer prevention.
    Matched MeSH terms: Oryza/chemistry*
  4. Lubowa M, Yeoh SY, Easa AM
    Food Sci Technol Int, 2018 Sep;24(6):476-486.
    PMID: 29600879 DOI: 10.1177/1082013218766984
    This study investigated the influence of pregelatinized high-amylose maize starch and chilling treatment on the physical and textural properties of canned rice noodles thermally processed in a retort. Rice noodles were prepared from rice flour partially substituted with pregelatinized high-amylose maize starch (Hylon VII™) in the ratios 0, 5, 10, and 15% (wt/wt). High-amylose maize starch improved the texture and brightness of fresh (not retorted) noodles. Chilling treatment led to significant (P ≤ 0.05) improvement in the texture of fresh noodles at all levels of substitution with high-amylose starch. The highest hardness was recorded at 15% amylose level in chilled nonretorted noodles. Retort processing induced a major loss of quality through water absorption, retort cooking loss, decreased noodle hardness, and lightness. However, the results showed that amylose and chilling treatment positively reduced the impact of retorting. For each level of amylose substitution, a low retort cooking loss and increased noodle hardness were associated with a chilling treatment. For both chilled and nonchilled noodles, retort cooking loss and hardness increased with increasing levels of amylose substitution.
    Matched MeSH terms: Oryza/chemistry*
  5. Rajendran Royan NR, Sulong AB, Yuhana NY, Chen RS, Ab Ghani MH, Ahmad S
    PLoS One, 2018;13(5):e0197345.
    PMID: 29847568 DOI: 10.1371/journal.pone.0197345
    The use of rice husks (RH) to reinforce polymers in biocomposites are increasing tremendously. However, the incompatibility between the hydrophilic RH fibers and the hydrophobic thermoplastic matrices leads to unsatisfactory biocomposites. Surface modification of the fiber surface was carried out to improve the adhesion between fiber and matrix. In this study, the effect of surface modification of RH via alkali, acid and ultraviolet-ozonolysis (UV/O3) treatments on the properties of composites recycled high density polyethylene (rHDPE) composites was investigated. The untreated and treated RH were characterized by Fourier Transform Infrared (FTIR) and Scanning Electron Microscope (SEM). The composites containing 30 wt% of RH (treated and untreated) were then prepared via extrusion and followed by compression molding. As compared to untreated RH, all surface treated RH exhibited rougher surface and showed improved adhesion with rHDPE matrix. Tensile strength of UV/O3-treated RH composites showed an optimum result at 18.37 MPa which improved about 5% in comparison to the composites filled with untreated RH. UV/O3 treatment promotes shorter processing time and lesser raw material waste during treatment process where this is beneficial for commercialization in the future developments of wood plastic composites (WPCs). Therefore, UV/O3 treatment can be served as an alternative new method to modify RH surface in order to improve the adhesion between hydrophilic RH fibre and hydrophobic rHDPE polymer matrix.
    Matched MeSH terms: Oryza*
  6. Abubakar B, Zawawi N, Omar AR, Ismail M
    PLoS One, 2017;12(7):e0181309.
    PMID: 28727791 DOI: 10.1371/journal.pone.0181309
    Type 2 diabetes is a metabolic disorder with established, well-defined precursors. Obesity and insulin resistance are amongst most important factors in predisposition to diabetes. Rice is a staple for about half the global population and its consumption has been strongly linked with diabetogenesis. We assert that tackling the prevalence of predisposing factors by modifying certain rice cultivars could reduce the global burden of obesity and insulin resistance, and by extension type 2 diabetes. Several rice cultivars with various properties were fed to nulliparous rats (five weeks old at the start of the experiment) for 90 days. They were then returned to a diet of standard pellets and mated with males raised on a standard diet. The resulting pups and dams were investigated for obesity and insulin resistance markers. We found that germination did more to reduce predisposition to obesity and insulin resistance than high amylose content. The combined reducing effect of germination and high amylose content on predisposition to obesity and insulin resistance was greater than the sum of their independent effects. Polished (white) rice with a low amylose content predisposed dams on a high-fat diet to markers of insulin resistance and obesity and this predisposition was inherited (in biochemical terms) by their F1 offspring. Overall, the results suggest that harnessing the beneficial properties of germination and amylose in rice would reduce the burden of obesity and insulin resistance, which are known to be key risk factors for development of type 2 diabetes.
    Matched MeSH terms: Oryza/metabolism*
  7. Supramaniam J, Adnan R, Mohd Kaus NH, Bushra R
    Int J Biol Macromol, 2018 Oct 15;118(Pt A):640-648.
    PMID: 29894784 DOI: 10.1016/j.ijbiomac.2018.06.043
    Magnetic nanocellulose alginate hydrogel beads are produced from the assembly of alginate and magnetic nanocellulose (m-CNCs) as a potential drug delivery system. The m-CNCs were synthesized from cellulose nanocrystals (CNCs) that were isolated from rice husks (RH) by co-precipitation method and were incorporated into alginate-based hydrogel beads with the aim of enhancing mechanical strength and regulating drug release behavior. Ibuprofen was chosen as a model drug. The prepared CNCs, m-CNCs and the alginate hydrogel beads were characterized by various physicochemical techniques such as Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM) and vibrating sample magnetometer studies (VSM). Besides the magnetic property, the presence of m-CNCs increased the integrity of the alginate hydrogel beads and the swelling percentage. The drug release study exhibited a controlled release profiles and based on the drug release data, the drug release mechanism was analyzed and discussed based on mathematical models such as Korsmeyer-Peppas and Peppas-Sahlin.
    Matched MeSH terms: Oryza/chemistry
  8. Ghasemzadeh A, Baghdadi A, Z E Jaafar H, Swamy MK, Megat Wahab PE
    Molecules, 2018 Jul 26;23(8).
    PMID: 30049990 DOI: 10.3390/molecules23081863
    Recently, the quality-by-design concept has been widely implemented in the optimization of pharmaceutical processes to improve batch-to-batch consistency. As flavonoid compounds in pigmented rice bran may provide natural antioxidants, extraction of flavonoid components from red and brown rice bran was optimized using central composite design (CCD) and response surface methodology (RSM). Among the solvents tested, ethanol was most efficient for extracting flavonoids from rice bran. The examined parameters were temperature, solvent percentage, extraction time, and solvent-to-solid ratio. The highest total flavonoid content (TFC) in red rice bran was predicted as 958.14 mg quercetin equivalents (QE)/100 g dry matter (DM) at 58.5 °C, 71.5% (v/v), 36.2 min, and 7.94 mL/g, respectively, whereas the highest TFC in brown rice bran was predicted as 782.52 mg QE/100 g DM at 56.7 °C, 74.4% (v/v), 36.9 min, and 7.18 mL/g, respectively. Verification experiment results under these optimized conditions showed that the TFC values for red and brown rice bran were 962.38 and 788.21 mg QE/100 g DM, respectively. No significant differences were observed between the predicted and experimental TFC values, indicating that the developed models are accurate. Analysis of the extracts showed that apigenin and p-coumaric acid are abundant in red and brown rice bran. Further, red rice bran with its higher flavonoid content exhibited higher nitric oxide and 2,2-diphenyl-1-picrylhydrazyl scavenging activities (EC50 values of 41.3 and 33.6 μg/mL, respectively) than brown rice bran. In this study, an extraction process for flavonoid compounds from red and brown rice bran was successfully optimized. The accuracy of the developed models indicated that the approach is applicable to larger-scale extraction processes.
    Matched MeSH terms: Oryza/chemistry*
  9. Tan YL, Voon HY, Ngeh N
    Med J Malaysia, 2018 06;73(3):170-171.
    PMID: 29962501
    We report the peculiar case of a patient who consumed raw rice daily and had iron-deficiency anaemia secondary to menorrhagia with underlying polycystic ovarian syndrome. A 32-year-old lady of Asian descent presented with symptoms of fatigue, lethargy and prolonged, irregular periods for the last two months. There was noticeable increase in body weight, male pattern alopecia and facial acne. In addition, she experienced sudden, unexplained predilection towards consumption of raw rice (up to 300- 400g/day). The patient was treated with oral iron and cyclical progestin. After three weeks, her haemoglobin improved and her ryzophagia subsided. Gynaecologists should be vigilant of pica, which can occur outside of the context of pregnancy and also poses potential health risks including tooth attrition, electrolyte imbalance, intestinal obstruction and poisoning.
    Matched MeSH terms: Oryza/adverse effects*
  10. Bzour M, Zuki FM, Mispan MS, Jodeh S, Abdel-Latif M
    Bull Environ Contam Toxicol, 2019 Aug;103(2):348-353.
    PMID: 31069403 DOI: 10.1007/s00128-019-02625-x
    The residual activity of herbicides may be detrimental to the environment, requiring analysis of the persistent residues in the soil and water. A field study was conducted to measure the residues of Imidazolinone (IMI) in three Clearfield® rice field soils at three different locations in Malaysia. The analyses of IMI in the soil samples were carried out using a high-performance liquid chromatography (HPLC). These herbicides are widely used; however, few studies have been conducted on both residues, especially in the context of Malaysian soil. Residues of imazapic and imazapyr were found to fall within 0.03-0.58 µg/mL and 0.03-1.96 µg/mL, respectively, in three locations. IMI herbicides are persistent in the soil, and their residues remain for up to 85 days after application. A pre-harvest study was suggested for these herbicides on water, which will provide a clearer indicator on the use of IMI in Clearfield® rice fields.
    Matched MeSH terms: Oryza/growth & development*
  11. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
    Matched MeSH terms: Oryza/genetics*
  12. Maru A, Ahmed OH, Primus WC, Jeffary AV
    Sci Rep, 2021 06 15;11(1):12545.
    PMID: 34131184 DOI: 10.1038/s41598-021-91426-6
    Unbalanced utilization of nitrogen (N) rice not economically viable neither is this practice environmental friendly. Co-application of biochar and urea could reduce the unbalanced use of this N fertilizer in rice cultivation. Thus, a field study was carried out to: (i) determine the effects of chicken litter biochar and urea fertilization on N concentration in soil solution of a cultivated rice (MR219) using dielectric measurement at a low frequency and (ii) correlate soil dielectric conductivity with rice grain yield at maturity. Dielectric response of the soil samples at 20, 40, 55, and 75 days after transplanting were determined using an inductance-capacitance-resistance meter HIOKI 3522-50 LCR HiTESTER. Selected soil chemical properties and yield were determined using standard procedures. The dielectric conductivity and permittivity of the soil samples measured before transplanting the rice seedlings were higher than those for the soil samples after transplanting. This was due to the inherent nitrogen of the chicken litter biochar and the low nitrogen uptake at the transplanting stage. The soil N response increased with increasing measurement frequency and N concentration. The permittivity of the soil samples was inversely proportional to frequency but directly proportional to N concentration in the soil solution. The estimated contents of N in the soil using the dielectric conductivity approach at 1000 Hz decreased with increasing days of fertilization and the results were similar to those of soil NH4+ determined using chemical analysis. The conductivity measured within 1000 Hz and 100,000 Hz correlated positively with the rice grain yield suggesting that nitrogen concentration of the soil can be used to estimate grain yield of the cultivated rice plants.
    Matched MeSH terms: Oryza/metabolism*
  13. Ashkani S, Yusop MR, Shabanimofrad M, Azady A, Ghasemzadeh A, Azizi P, et al.
    Curr Issues Mol Biol, 2015;17:57-73.
    PMID: 25706446
    Allele mining is a promising way to dissect naturally occurring allelic variants of candidate genes with essential agronomic qualities. With the identification, isolation and characterisation of blast resistance genes in rice, it is now possible to dissect the actual allelic variants of these genes within an array of rice cultivars via allele mining. Multiple alleles from the complex locus serve as a reservoir of variation to generate functional genes. The routine sequence exchange is one of the main mechanisms of R gene evolution and development. Allele mining for resistance genes can be an important method to identify additional resistance alleles and new haplotypes along with the development of allele-specific markers for use in marker-assisted selection. Allele mining can be visualised as a vital link between effective utilisation of genetic and genomic resources in genomics-driven modern plant breeding. This review studies the actual concepts and potential of mining approaches for the discovery of alleles and their utilisation for blast resistance genes in rice. The details provided here will be important to provide the rice breeder with a worthwhile introduction to allele mining and its methodology for breakthrough discovery of fresh alleles hidden in hereditary diversity, which is vital for crop improvement.
    Matched MeSH terms: Oryza/genetics*
  14. Mohd Azlan P, Jahromi MF, Ariff MO, Ebrahimi M, Candyrine SCL, Liang JB
    Trop Anim Health Prod, 2018 Mar;50(3):565-571.
    PMID: 29150805 DOI: 10.1007/s11250-017-1470-x
    The objectives of this study were to test the efficacy of producing lovastatin in rice straw treated with Aspergillus terreus in larger laboratory scale following the procedure previously reported and to investigate the effectiveness of the treated rice straw containing lovastatin on methane mitigation in goats. The concentration of lovastatin in the treated rice straw was 0.69 ± 0.05 g/kg dry matter (DM) rice straw. Our results showed that supplementation of lovastatin at 4.14 mg/kg BW reduced methane production by 32% while improving the DM digestibility by 13% (P 
    Matched MeSH terms: Oryza/microbiology*
  15. Zhu J, Li Y, Jiang H, Liu C, Lu W, Dai W, et al.
    Ecotoxicology, 2018 May;27(4):411-419.
    PMID: 29404868 DOI: 10.1007/s10646-018-1904-x
    The novel mesoionic insecticide triflumezopyrim was highly effective in controlling both imidacloprid-susceptible and resistant planthopper populations in Malaysia. However, the toxicity of triflumezopyrim to planthopper populations and their natural enemies has been under-investigated in China. In this study, the median lethal concentrations (LC50) of triflumezopyrim were determined in eight field populations of Nilaparvata lugens and one population of Sogatella furcifera from China under laboratory conditions. Triflumezopyrim showed higher toxicity to planthopper populations than the commonly-used insecticide, imidacloprid. Furthermore, the lethal effect of triflumezopyrim on eight beneficial arthropods of planthoppers was investigated in the laboratory and compared with three commonly-used insecticides, thiamethoxam, chlorpyrifos and abamectin. Triflumezopyrim was harmless to Anagrus nilaparvatae, Cyrtorhinus lividipennis and Paederus fuscipes, while thiamethoxam, chlorpyrifos and abamectin were moderately harmful or harmful to the insect parasitoid and predators. Triflumezopyrim and thiamethoxam were harmless to the predatory spiders Pirata subpiraticus, Ummeliata insecticeps, Hylyphantes graminicola and Pardosa pseudoannulata, and slightly harmful to Theridion octomaculatum. Chlorpyrifos caused slight to high toxicity to four spider species except U. insecticeps. Abamectin was moderately to highly toxic to all five spider species. Our results indicate that triflumezopyrim has high efficacy for rice planthoppers populations and is compatibile with their natural enemies in China.
    Matched MeSH terms: Oryza/growth & development
  16. Jaafar M, Marcilla AL, Felipe-Sotelo M, Ward NI
    Food Chem, 2018 Apr 25;246:258-265.
    PMID: 29291847 DOI: 10.1016/j.foodchem.2017.11.019
    Water from La Pampa, Argentina, was used for washing and cooking rice to examine the in-situ impact of using naturally-contaminated water for food preparation on the elemental dietary intake. Whilst washing with the control tap water (28 μg/L As) reduced the concentration of As in rice by 23%, the use of different well waters (281-1144 μg/L) increased As levels significantly (48-227%) in comparison with the original concentration in the rice (0.056 µg/g). Cooking the rice at a low water-to-rice ratio (2:1) using modern methods increased the levels of As in the cooked samples by 2-3 orders of magnitude for both pre-washed and un-washed rice. Similar trends were observed for vanadium. Although the levels of manganese, iron, copper, zinc and molybdenum in rice were reduced during washing and cooking for most water samples, the molybdenum concentration in the cooked rice doubled (2.2-2.9 µg/g) when using water containing >1 mg/L Mo.
    Matched MeSH terms: Oryza/chemistry*
  17. Mohamed M, Yusup S, Quitain AT, Kida T
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33882-33896.
    PMID: 29956260 DOI: 10.1007/s11356-018-2549-2
    The CO2 capture capacity and cyclic stability of calcium oxide (CaO) prepared from cockle shells (CS) were enhanced by incorporating rice husk (RH) and binder through wet-mixing method. The cyclic reaction of calcination and carbonation was demonstrated using thermal gravimetric analyzer (TGA) which the calcination was performed in a pure N2 environment at 850 °C for 20 min and carbonation at 650 °C for 30 min in 20 vol% of CO2 in N2. The analysis using x-ray fluorescence (XRF) identified silica (Si) as the major elements in the sorbents. The RH-added sorbents also contained several types of metal elements such as which was a key factor to minimize the sintering of the sorbent during the cyclic reaction and contributed to higher CO2 capture capacity. The presence of various morphologies also associated with the improvement of the synthesized sorbents performance. The highest initial CO2 capture capacity was exhibited by CS+10%RH sorbent, which was 12% higher than the RH-free sorbent (CS). However, sorbents with the higher RH loading amount such as 40 and 50 wt% were preferred to maintain high capture capacity when the sorbents were regenerated and extended to the cyclic reaction. The sorbents also demonstrated the lowest average sorption decay, which suggested the most stable sorbent for cyclic-reaction. Once regenerated, the capture capacity of the RH-added sorbent was further increased by 12% when clay was added into the sorbent. Overall, the metal elements in RH and clay were possibly the key factor that enhances the performance of CaO prepared from CS, particularly for cyclic CO2 capture. Graphical abstract Cyclic calcination and carbonation reaction.
    Matched MeSH terms: Oryza/chemistry
  18. Zulkafflee NS, Mohd Redzuan NA, Hanafi Z, Selamat J, Ismail MR, Praveena SM, et al.
    PMID: 31795132 DOI: 10.3390/ijerph16234769
    Rice ingestion is one of the major pathways for heavy metal bioaccumulation in human. This study aimed to measure the heavy metal content of paddy soils and its bioavailability in paddy grain in order to assess the health risk. In total, 10 rice samples (50 g each) of paddy plants were harvested from the Selangor and Terengganu areas of Malaysia to assess the bioavailability of heavy metal (As, Cd, Cu, Cr, and Pb) using the in vitro digestion model of Rijksinstituut voor Volksgezondheid en Milieu. The bioavailability of heavy metal concentrations in rice samples were analyzed using Inductively Coupled Plasma Mass Spectrometry (ICP-MS). The findings showed the bioavailability of heavy metal concentrations was decreased in the order Cr > Cu > Pb > As > Cd. Chromium was found to be the most abundant bioavailable heavy metal in cooked rice, which was the result of its high content in paddy soil. Hazard Quotient values for the bioavailability of the heavy metal studied were less than one indicating no non-carcinogenic health risks for adults and children. Meanwhile, the total Lifetime Cancer Risk exceeded the acceptable value showing a potential of carcinogenic health risk for both adults and children. The application of in vitro digestion model in assessing bioavailability of heavy metal produces a more realistic estimation of human health risks exposure. However, a regular monitoring of pollution in Selangor and Terengganu areas is crucial since the exposure of heavy metals through rice consumption poses the potential non-carcinogenic and carcinogenic health risk to the local residents.
    Matched MeSH terms: Oryza/chemistry*
  19. Law YS, Gudimella R, Song BK, Ratnam W, Harikrishna JA
    Int J Mol Sci, 2012;13(7):9343-9362.
    PMID: 22942769 DOI: 10.3390/ijms13079343
    Many of the plant leucine rich repeat receptor-like kinases (LRR-RLKs) have been found to regulate signaling during plant defense processes. In this study, we selected and sequenced an LRR-RLK gene, designated as Oryza rufipogon receptor-like protein kinase 1 (OrufRPK1), located within yield QTL yld1.1 from the wild rice Oryza rufipogon (accession IRGC105491). A 2055 bp coding region and two exons were identified. Southern blotting determined OrufRPK1 to be a single copy gene. Sequence comparison with cultivated rice orthologs (OsI219RPK1, OsI9311RPK1 and OsJNipponRPK1, respectively derived from O. sativa ssp. indica cv. MR219, O. sativa ssp. indica cv. 9311 and O. sativa ssp. japonica cv. Nipponbare) revealed the presence of 12 single nucleotide polymorphisms (SNPs) with five non-synonymous substitutions, and 23 insertion/deletion sites. The biological role of the OrufRPK1 as a defense related LRR-RLK is proposed on the basis of cDNA sequence characterization, domain subfamily classification, structural prediction of extra cellular domains, cluster analysis and comparative gene expression.
    Matched MeSH terms: Oryza/genetics*
  20. Chan KL, Rosli R, Tatarinova TV, Hogan M, Firdaus-Raih M, Low EL
    BMC Bioinformatics, 2017 Jan 27;18(Suppl 1):1426.
    PMID: 28466793 DOI: 10.1186/s12859-016-1426-6
    BACKGROUND: Gene prediction is one of the most important steps in the genome annotation process. A large number of software tools and pipelines developed by various computing techniques are available for gene prediction. However, these systems have yet to accurately predict all or even most of the protein-coding regions. Furthermore, none of the currently available gene-finders has a universal Hidden Markov Model (HMM) that can perform gene prediction for all organisms equally well in an automatic fashion.

    RESULTS: We present an automated gene prediction pipeline, Seqping that uses self-training HMM models and transcriptomic data. The pipeline processes the genome and transcriptome sequences of the target species using GlimmerHMM, SNAP, and AUGUSTUS pipelines, followed by MAKER2 program to combine predictions from the three tools in association with the transcriptomic evidence. Seqping generates species-specific HMMs that are able to offer unbiased gene predictions. The pipeline was evaluated using the Oryza sativa and Arabidopsis thaliana genomes. Benchmarking Universal Single-Copy Orthologs (BUSCO) analysis showed that the pipeline was able to identify at least 95% of BUSCO's plantae dataset. Our evaluation shows that Seqping was able to generate better gene predictions compared to three HMM-based programs (MAKER2, GlimmerHMM and AUGUSTUS) using their respective available HMMs. Seqping had the highest accuracy in rice (0.5648 for CDS, 0.4468 for exon, and 0.6695 nucleotide structure) and A. thaliana (0.5808 for CDS, 0.5955 for exon, and 0.8839 nucleotide structure).

    CONCLUSIONS: Seqping provides researchers a seamless pipeline to train species-specific HMMs and predict genes in newly sequenced or less-studied genomes. We conclude that the Seqping pipeline predictions are more accurate than gene predictions using the other three approaches with the default or available HMMs.

    Matched MeSH terms: Oryza/genetics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links