DESIGN AND METHODS: The activity of DPD was measured using 5-[2- (14)C]Fluorouracil (5-[2-(14)C]FUra) followed by separation of substrate and product 5-[2-(14)C]FUraH(2) with a 15 x 4.6 mm I.D., 5 microm particle size (d(p)) porous graphitic carbon (PGC) column (Hypercarb(R)) and HPLC with online detection of the radioactivity. This was standardized using the protein concentration of the cytosol (NanoOrange(R) Protein Quantitation).
RESULTS: Complete baseline separation of 5-[2-(14)C]Fluorouracil (5-[2-(14)C]FUra) and 5-[2-(14)C]Fluoro-5,6-dihydrouracil (5-[2-(14)C]FUraH(2)) was achieved using a porous graphitic carbon (PGC) column. The detection limit for 5-[2-(14)C]FUraH(2) was 0.4 pmol.
CONCLUSIONS: By using linear gradient separation (0.1% Trifluoroacetic acid [TFA] in water to 100% Methanol) protocols in concert with PGC columns (Hypercarb(R)), we have demonstrated that a PGC column has a distinct advantage over C-18 reverse phase columns in terms of column stability (pH 1-14). This method provides an improvement on the specific assay for DPD enzyme activity. It is rapid, reproducible and sensitive and can be used for routine screening for healthy and cancer patients for partial and profound DPD deficiency before treatment with 5- FUra.
MATERIALS AND METHODS: Antinociceptive activity of ethanol pomegranate extract was examined using three models of pain: the writhing test, the hot tail flick test and the plantar test. The ethanolic extract of pomegranate was administered by oral gavages in doses of (100,150 and 200mg/kg, p.o (orally)), for all the tests and compared with aspirin (100mg/kg, p.o.) which was considered as the standard drug. Phytochemical screening and HPLC analysis of the plant species was carried out.
RESULTS: In the writhing test, the index of pain inhibition (IPI) was 37% for ethanolic extract of pomegranate (200mg/kg, p.o.), and 59% for aspirin. In the hot tail flick test, the ethanolic extract of pomegranate (200mg/kg, p.o.), has shown significant analgesia reaching its peak at 60 min maximum possible analgesia (MPA), was 24.1% as compared with aspirin 37.5%. Hyperalgesia was successfully induced by the plantar test and the ethanol extract of pomegranate (100,150,200mg/kg, p.o.), reduced the hyperalgesia in a dose dependent manner comparable to aspirin at (100mg/kg, p.o.). HPLC analysis revealed the presence of gallic acid, ellagic acid and Punicalagins A&B.
CONCLUSION: The results demonstrated that ethanol pomegranate extract has an antinociceptive effect that may be related to the presence of identified phytochemicals.