METHODS AND RESULTS: The leaves of D. linearis were subjected to sonication-assisted extraction using hexane (HEX), dichloromethane, ethyl acetate and methanol (MeOH). It was found that only the MeOH fraction exhibited antimicrobial activity using broth microdilution assay; while all four fractions do not exhibit biofilm inhibition activity against S. aureusATCC 6538P, S. aureusATCC 43300, S. aureusATCC 33591 and S. aureusATCC 29213 using crystal violet assay. Among the four fractions tested, only the HEX fraction showed biofilm disrupting ability, with 60-90% disruption activity at 5 mg ml-1against all four S. aureus strains tested. Bioassay-guided purification of the active fraction has led to the isolation of α-tocopherol. α-Tocopherol does not affect the cells within the biofilms but instead affects the biofilm matrix in order to disrupt S. aureus biofilms.
CONCLUSIONS: α-Tocopherol was identified to be the bioactive component of D. linearis with disruption activity against S. aureus biofilm matrix.
SIGNIFICANCE AND IMPACT OF THE STUDY: The use of α-tocopherol as a biofilm disruptive agent might potentially be useful to treat biofilm-associated infections in the future.
OBJECTIVE: The present study examines the antibacterial properties of 18 medicinal plants used by the Khyang tribe in day-to-day practice against human pathogenic bacteria.
MATERIALS AND METHODS: Leaves, bark, fruits, seeds, roots and rhizomes from collected plants were successively extracted with hexane, ethyl acetate and ethanol. The corresponding 54 extracts were tested against six human pathogenic bacteria by broth microdilution assay. The antibacterial mode of actions of phytoconstituents and their synergistic effect with vancomycin and cefotaxime towards MRSA was determined by time-killing assay and synergistic interaction assay, respectively.
RESULTS AND DISCUSSION: Hexane extract of bark of Cinnamomum cassia (L.) J. Presl. (Lauraceae) inhibited the growth of MRSA, Enterococcus faecalis, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii with MIC values below 100 µg/mL. From this plant, cinnamaldehyde evoked at 4 × MIC in 1 h an irreversible decrease of MRSA count Log10 (CFU/mL) from 6 to 0, and was synergistic with vancomycin for MRSA with fractional inhibitory concentration index of 0.3.
CONCLUSIONS: Our study provides evidence that the medicinal plants in Bangladesh have high potential to improve the current treatment strategies for bacterial infection.
IMPORTANCE: With increasing levels of CA-MRSA reported from most parts of the Western world, there is a great interest in understanding the origin and factors associated with the emergence of these epidemic lineages. To trace the origin, evolution, and dissemination pattern of the European CA-MRSA clone (CC80), we sequenced a global collection of strains of the S. aureus CC80 lineage. Our study determined that a single descendant of a PVL-positive methicillin-sensitive ancestor circulating in sub-Saharan Africa rose to become the dominant CA-MRSA clone in Europe, the Middle East, and North Africa. In the transition from a methicillin-susceptible lineage to a successful CA-MRSA clone, it simultaneously became resistant to fusidic acid, a widely used antibiotic for skin and soft tissue infections, thus demonstrating the importance of antibiotic selection in the success of this clone. This finding furthermore highlights the significance of horizontal gene acquisitions and underscores the combined importance of these factors for the success of CA-MRSA.