Displaying publications 321 - 340 of 2499 in total

Abstract:
Sort:
  1. Abdul Wahab SM, Husain K, Jantan I, Arshad L, Haque MA, Mohd Fauzi N, et al.
    Curr Pharm Biotechnol, 2023;24(11):1465-1477.
    PMID: 36545731 DOI: 10.2174/1389201024666221221113020
    BACKGROUND: Annona muricata L. (Annonaceae) (AM)'s remarkable anti-inflammatory and anti-cancer activities make it a targeted plant to be explored for its immunomodulatory properties. Traditional practitioners have employed various components of AM to cure a variety of ailments, including cancer, diabetes, and inflammation.

    OBJECTIVE: The present study evaluated the immunosuppressive effects of 80% ethanol extract of of AM leaves in male Wistar rats on different parameters of humoral and cellular immune responses.

    METHODS: AM leaf extract (AMLE) was analyzed using UHPLC-MS/MS to profile its secondary metabolites. AMLE was rich in polyphenols which include (epi)catechin-(epi)catechin-(epi) catechin, caffeic acid, coumaroylquinic acid, hyperin, kaempferol, quinic acid and rutin. The rats were administered 100, 200 and 400 mg/kg bw of the extract daily for 14 days. The effects of AMLE on innate immune responses were determined by evaluating phagocytosis, neutrophils migration, reactive oxygen species (ROS) release, CD11b/CD18 integrin expression, and ceruloplasmin, lysozyme and myeloperoxidase (MPO) levels. The adaptive immune parameters were evaluated by immunizing the rats with sheep red blood cells (sRBC) on day 0 and administered orally with AMLE for 14 days.

    RESULTS: AMLE established significant immunosuppressive effects on the innate immune parameters by inhibiting the neutrophil migration, ROS production, phagocytic activity and expression of CD11b/CD18 integrin in a dose-dependent pattern. AMLE also suppressed ceruloplasmin, MPO and lysozyme expressions in the rat plasma dose-dependently. AMLE dose-dependently inhibited T and B lymphocytes proliferation, Th1 and Th2 cytokine production, CD4+ and CD8+ co-expression in splenocytes, immunoglobulins (IgM and IgG) expression and the sRBC-induced swelling rate of rat paw in delayed-type hypersensitivity (DTH).

    CONCLUSION: The strong inhibitory effects on the different parameters of humoral and cellular responses indicate that AMLE has potential to be an important source of effective immunosuppressive agents.

    Matched MeSH terms: Plant Extracts/pharmacology
  2. Jobaer MA, Ashrafi S, Ahsan M, Hasan CM, Rashid MA, Islam SN, et al.
    Molecules, 2023 May 19;28(10).
    PMID: 37241926 DOI: 10.3390/molecules28104186
    Gynura procumbens (Lour.) Merr. (Family: Asteraceae) is a tropical Asian medicinal plant found in Thailand, China, Malaysia, Indonesia, and Vietnam. It has long been utilized to treat a variety of health concerns in numerous countries around the world, such as renal discomfort, constipation, diabetes mellitus, rheumatism, and hypertension. The chemical investigation resulted in the isolation and characterization of six compounds from the methanol (MeOH) extract of the leaves of Gynura procumbens, which were identified as phytol (1), lupeol (2), stigmasterol (3), friedelanol acetate (4), β-amyrin (5), and a mixture of stigmasterol and β-sitosterol (6). In-depth investigations of the high-resolution 1H NMR and 13C NMR spectroscopic data from the isolated compounds, along with comparisons to previously published data, were used to clarify their structures. Among these, the occurrence of Compounds 1 and 4 in this plant are reported for the first time. The crude methanolic extract (CME) and its different partitionates, i.e., petroleum ether (PESF), chloroform (CSF), ethyl acetate (EASF), and aqueous (AQSF) soluble fractions, were subjected to antioxidant, cytotoxic, thrombolytic, and anti-diabetic activities. In a DPPH free radical scavenging assay, EASF showed the maximum activity, with an IC50 value of 10.78 µg/mL. On the other hand, CSF displayed the highest cytotoxic effect with an LC50 value of 1.94 µg/mL compared to 0.464 µg/mL for vincristine sulphate. In a thrombolytic assay, the crude methanolic extract exhibited the highest activity (63.77%) compared to standard streptokinase (70.78%). During the assay for anti-diabetic activity, the PESF showed 70.37% of glucose-lowering activity, where standard glibenclamide showed 63.24% of glucose-reducing activity.
    Matched MeSH terms: Plant Extracts/chemistry
  3. Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, et al.
    Sci Total Environ, 2023 Jul 10;881:163002.
    PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002
    The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
    Matched MeSH terms: Plant Extracts/chemistry
  4. Astuti SD, Mawaddah A, Kusumawati I, Mahmud AF, Nasution AMT, Purwanto B, et al.
    Lasers Med Sci, 2024 Feb 23;39(1):79.
    PMID: 38393433 DOI: 10.1007/s10103-024-04020-3
    The study investigates the effect of diode laser exposure on curcumin's skin penetration, using turmeric extraction as a light-sensitive chemical and various laser light sources. It uses an in vivo skin analysis method on Wistar strain mice. The lasers are utilized at wavelengths of 403 nm, 523 nm, 661 nm, and 979 nm. The energy densities of the lasers are 20.566 J/cm2, 20.572 J/cm2, 21.162 J/cm2, and 21.298 J/cm2, which are comparable to one another. The experimental animals were divided into three groups: base cream (BC), turmeric extract cream (TEC), and the combination laser (L), BC, and TEC treatment group. Combination light source (LS) with cream (C) was performed with 8 combinations namely 523 nm ((L1 + BC) and (L1 + TEC)), 661 nm ((L2 + BC) and (L2 + TEC)), 403 nm ((L3 + BC) and (L3 + TEC)), and 979 nm ((L4 + BC) and (L4 + TEC)). The study involved applying four laser types to cream-covered and turmeric extract-coated rat skin, with samples scored for analysis. The study found that both base cream and curcumin cream had consistent pH values of 7-8, within the skin's range, and curcumin extract cream had lower viscosity. The results of the statistical analysis of Kruskal-Wallis showed a significant value (p  0.05), while the treatment using BC and TEC showed a significant difference (p 
    Matched MeSH terms: Plant Extracts*
  5. Ansari RM
    Indian J Pharmacol, 2016 May-Jun;48(3):338-9.
    PMID: 27298513 DOI: 10.4103/0253-7613.182892
    Matched MeSH terms: Plant Extracts/therapeutic use*
  6. Zailan AAD, Karunakaran T, Santhanam R, Suriaty Yaakop A, Mohan S, Abu Bakar MH, et al.
    Chem Biodivers, 2024 Mar;21(3):e202301936.
    PMID: 38268343 DOI: 10.1002/cbdv.202301936
    The genus Calophyllum from the family Calophyllaceae has been extensively investigated in the past due to its rich source of bioactive phenolics such as coumarins, chromanones, and xanthones. In this study, phytochemical investigation on the stem bark of Calophyllum havilandii has afforded a new 4-propyldihydrocoumarin derivative, havilarin (1) together with calolongic acid (2), caloteysmannic acid (3), isocalolongic acid (4), euxanthone (5), and β-sitosterol (6). The chemical structure of compound 1 was elucidated and established based on detailed spectroscopic techniques, including MS, IR, UV, 1D and 2D NMR. The results of anti-bacillus study indicated that the chloroform extract showed promising activities with MIC value ranging between 0.5 to 1 μg/mL on selected bacillus strains. Besides, the plant extracts and compounds 1-4 were assessed for their cytotoxicity potential on HL-7702 cell line. All the tested plant extracts and respective chemical constituents displayed non-cytotoxic activity on HL-7702 cell line.
    Matched MeSH terms: Plant Extracts/chemistry
  7. Aldurrah Z, Mohd Kauli FS, Abdul Rahim N, Zainal Z, Afzan A, Al Zarzour RH, et al.
    PMID: 37301417 DOI: 10.1016/j.cbpc.2023.109678
    Andrographis paniculata (A. paniculata) showed an anti-depressive effect in rodent models. Zebrafish has recently emerged as a worthy complementary translational model for antidepressant drug discovery study. This study investigates the anti-depressive effect of A. paniculata extract and andrographolide in the chronic unpredictable stress (CUS)- zebrafish model. Four groups of zebrafish (n = 10/group), i.e. control, CUS (stressed, untreated), CUS + A. paniculata (100 mg/L) and CUS + fluoxetine (0.01 mg/L) were assessed in open-field and social interaction tests, 24 h after treatment. After extract screening, behavioural and cortisol analysis of andrographolide (5, 25 and 50 mg/kg, i.p.) and fluoxetine (10 mg/kg, i.p.) were evaluated. Before the behavioural study, acute toxicity and characterization of A. paniculata extract using UHPLC-ESI-MS/MS were performed. A significant reduction in freezing duration was found in A. paniculata- (t-test, p = 0.0234) and fluoxetine-treated groups (t-test, p 
    Matched MeSH terms: Plant Extracts/pharmacology
  8. Ullah S, Anwar F, Fayyaz Ur Rehman M, Qadir R, Safwan Akram M
    Chem Biodivers, 2023 Jul;20(7):e202300107.
    PMID: 37172296 DOI: 10.1002/cbdv.202300107
    This article presents an optimized ultrasound-assisted ethanolic extraction (UAEE) and characterization of selected high-value components from Gemlik olive fruit (GOF) harvested from Potohar region of Pakistan. Response surface methodology (RSM), involving central composite design (CCD), was applied to optimize the extraction variables i. e., temperature (25-65 °C), extraction time (15-45 min) and aqueous ethanol concentration (60-90 %) for optimal recovery of bioactives extract, total phenolic contents (TPC) and DPPH free radical scavengers. Under the optimized set of conditions such as 43 °C temperature, 32 min extraction time and 80 % aqueous ethanol, the best extract yield (218.82 mg/g), TPC (19.87 mg GAE/g) and DPPH scavenging activity (63.04 %) were recorded. A quadratic polynomial model was found to be reasonably fitted to the observed results for extract yield (p<0.0001 and R2 =0.9941), TPC (p<0.0001 and R2 =0.9891), and DPPH radical scavenging activity (p<0.0001 and R2 =0.9692). Potent phenolic compounds were identified by GC/MS in GOF extract and considerable amount of essential fatty acids were also detected. The current findings support the use of UAEE as an effective green route for optimized recovery of high-value components from GOF and hence its applications can be extended to functional food and nutra-pharmaceutical developments.
    Matched MeSH terms: Plant Extracts/chemistry
  9. Delgado-Núñez EJ, López-Arellano ME, Olmedo-Juárez A, Díaz-Nájera JF, Ocampo-Gutiérrez AY, Mendoza-de Gives P
    Trop Biomed, 2023 Mar 01;40(1):108-114.
    PMID: 37356010 DOI: 10.47665/tb.40.1.017
    Haemonchus contortus (Hc) is a hematophagous parasite affecting the health and productivity of flocks. The administration of chemical anthelmintic drugs (AH) is the common method of deworming; however, generates resistance in the parasites to AH and it is a public health risk due to drug residues in milk, meat and sub-products. Natural compounds from plants are explored to diminish this parasitosis, improving their health and productivity, without the negative effects of AH. Ipomoea genus is a group of climbing plants belonging to the Convulvulaceae family possessing perennial leaves and tuberous roots. Medicinal properties has been attributed to this plant including nutritional agents, emetics, diuretics, diaphoretics, purgatives and pesticides. The objective of this study was assessing the in vitro nematocidal activity of a hydroalcoholic extract (HA-E) obtained from Ipomoea pauciflora (Cazahuate) flowers against Hc infective larvae (L3) and to identify its phytochemical profile (PhC-P). The assay was carried out using microtiter plates (MTP). Four HA-E concentrations were assessed and Ivermectin and distilled water were used as positive and negative control groups, respectively. Approximately 100 Hc L3 were deposited in each well (n=12) and incubated at 25-35°C for 7 days. Data were analyzed using ANOVA and a General Linear Model (GLM) followed by Tukey test (P<0.05). The treatments showing a concentration-dependent effect (CDE) were analyzed to identify their 50% and 90% lethal concentrations (CL50, 90) via a Probit Analysis. The highest mortality was observed at 50 mg/mL (82.64 ± 0.71%) and the lowest at 6.25 mg/mL (56.46 ± 2.49%), showing a CDE with increasing mortality from 6.25 to 50 mg/mL. The PhC-P revealed the presence of alkaloids, coumarins, flavonoids, tannins and triterpenes/ sterols. A HA-E from flowers of I. pauciflora will be considered to assess its potential use in the control of haemonchosis in small ruminants.
    Matched MeSH terms: Plant Extracts/pharmacology
  10. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
    Matched MeSH terms: Plant Extracts/chemistry
  11. Ekeuku SO, Chin KY, Mohd Ramli ES
    PMID: 36453484 DOI: 10.2174/1871530323666221130152737
    BACKGROUND: Piper sarmentosum (PS) is a traditional herb used by Southeast Asian communities to treat various illnesses. Recent pharmacological studies have discovered that PS possesses antioxidant and anti-inflammatory activities. Since oxidative stress and inflammation are two important processes driving the pathogenesis of bone loss, PS may have potential therapeutic effects against osteoporosis.

    OBJECTIVE: This review systematically summarised the therapeutic effects of PS on preventing osteoporosis and promoting fracture healing.

    METHODS: A systematic literature search was performed in November 2021 using 4 electronic databases and the search string "Piper sarmentosum" AND (bone OR osteoporosis OR osteoblasts OR osteoclasts OR osteocytes).

    RESULTS: Nine unique articles were identified from the literature. The efficacy of PS has been studied in animal models of osteoporosis induced by ovariectomy and glucocorticoids, as well as bone fracture models. PS prevented deterioration of bone histomorphometric indices, improved fracture healing and restored the biomechanical properties of healed bone in ovariectomised rats. PS also prevented osteoblast/osteocyte apoptosis, increased bone formation and mineralisation and subsequently improved trabecular bone microstructures and strength of rats with osteoporosis induced by glucocorticoids. Apart from its antioxidant and anti-inflammatory activity, PS also suppressed circulating and skeletal expression of corticosterone and skeletal expression of 11β hydroxysteroid dehydrogenase type 1 but increased the enzyme activity in the glucocorticoid osteoporosis model. This review also identified several research gaps about the skeletal effects of PS and suggested future studies to bridge these gaps.

    CONCLUSION: PS may be of therapeutic benefit to bone health. However, further research is required to validate this claim.

    Matched MeSH terms: Plant Extracts/pharmacology
  12. Jamal HAA, Husaini A, Sing NN, Roslan HA, Zulkharnain A, Akinkunmi WA
    Braz J Microbiol, 2022 Dec;53(4):1857-1870.
    PMID: 36109458 DOI: 10.1007/s42770-022-00827-w
    This research evaluates the bioactivity of twelve endophytic fungi successfully isolated and characterised from Gynura procumbens. The fungal extracts displayed inhibitory activity against Staphylococcus aureus, Pseudomonas aeruginosa, Methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Salmonella typhi with the MIC and MBC of 5000 µg/mL. High antioxidant activity using DPPH free radical scavenging assay with inhibition of 86.6% and IC50 value of 104.25 ± 18.51 µg/mL were exhibited by ethyl acetate extract of Macrophomina phaseolina SN6. In contrast, the highest scavenging activity percentage of methanolic extract was exhibited by Mycoleptodiscus indicus SN4 (50.0%). Besides that, the highest ferric reducing antioxidant power (FRAP) value of ethyl acetate and methanolic extract was recorded from M. phaseolina SN6 (239.9 mg Fe (II)/g) and M. indicus SN4 (44.7 mg Fe (II)/g), respectively. Total phenolic content (TPC) and total flavonoid content (TFC) of ethyl acetate and methanolic fungal extracts were determined using Folin-Ciocalteu and aluminium chloride, respectively. The highest TPC for ethyl acetate and methanolic extracts were exhibited by Colletotrichum gloeosporioides SN11 (87.0 mg GAE/g) and M. indicus SN4 (35.0 mg GAE/g), whereas the highest TFC of ethyl acetate and methanolic extracts were showed by M. phaseolina SN6 (122.8 mg QCE/g) and M. indicus SN4 (60.4 mg QCE/g), respectively. Bioactive metabolites of isoelemicin (50.8%), terpinen-4-ol (21.5%), eucalyptol (24.3%), oleic acid (19.8%) and β-pinene (10.9%) were detected. Owing to the higher content of phytochemicals represented in the ethyl acetate extract of M. phaseolina, SN6 is therefore identified to be a superior candidate in exhibiting strong antioxidant and antimicrobial properties be fit for further pharmaceutical studies.
    Matched MeSH terms: Plant Extracts/chemistry
  13. Tan KS, Azman AS, Hassandarvish P, Amelia-Yap ZH, Tan TK, Low VL
    Int J Mol Sci, 2023 Aug 03;24(15).
    PMID: 37569772 DOI: 10.3390/ijms241512398
    The insecticidal activity of Streptomyces sp. KSF103 ethyl acetate (EA) extract against mosquitoes is known; however, the underlying mechanism behind this activity remains elusive. In this study, liquid chromatography with tandem mass spectrometry (LC-MS/MS) was employed to investigate changes in the protein profile of Aedes aegypti larvae and adults treated with lethal concentrations of 50 (LC50) EA extract. By comparing the treated and untreated mosquitoes, this study aimed to identify proteins or pathways that exhibit alterations, potentially serving as targets for future insecticide development. Treatment with a lethal concentration of EA extract upregulated 15 proteins in larvae, while in adults, 16 proteins were upregulated, and two proteins were downregulated. These proteins were associated with metabolism, protein regulation/degradation, energy production, cellular organization and structure, enzyme activity, and catalysis, as well as calcium ion transport and homeostasis. Notably, ATP synthase, fructose-bisphosphate aldolase (FBA), and ATP citrate synthase were significantly expressed in both groups. Gene ontology analysis indicated a focus on energy metabolic processes. Molecular docking revealed a strong interaction between dodemorph, selagine (compounds from the EA extract), and FBA, suggesting FBA as a potential protein target for insecticide development. Further studies such as Western blot and transcriptomic analyses are warranted to validate the findings.
    Matched MeSH terms: Plant Extracts/chemistry
  14. Humaryanto, Rahman AO, Fairuz Q
    Med J Malaysia, 2022 Mar;77(2):196-202.
    PMID: 35338627
    BACKGROUND: The application of green coffee bean extract is known to accelerate cutaneous wound healing. Fibronectin and fibroblast growth factors (FGFs) are essential in the wound healing process. However, data on the effect of the green coffee bean extract on fibronectin and FGFs are still limited.

    OBJECTIVE: This study aimed to determine the effect of the green coffee extract on the expression of fibronectin dan FGFs in rats' cutaneous wounds.

    MATERIALS AND METHODS: Forty male Sprague Dawney rats, aged 2-3 months, weighing 150-200 grams, were randomly divided into four groups. Cutaneous wounds were made 1.5 cm in diameter and under lidocaine anaesthesia. Group I without treatment was the control group, group II was given a green coffee extract dose of 15%, group III was given a green coffee extract dose of 30%, and group IV was given a green coffee extract dose of 100%. The treatment was applied every day without wound debridement. In each group, five rats were sacrificed after 7 days of treatment (proliferative phase), and the rest were sacrificed after 16 days of treatment (remodelling phase). An anatomical pathologist carried out the immunohistochemical examination to assess fibronectin and FGF expression using a blind method.

    RESULTS: The expressions of fibronectin and FGF in the treatment groups were slightly higher than those in the control group, both in the proliferative and remodelling phases. Only, fibronectin expression of the green coffee dose of 100% was significantly higher than the control group in the remodelling phase.

    CONCLUSION: The application of green coffee bean extract in cutaneous wounds could increase fibronectin expression.

    Matched MeSH terms: Plant Extracts/pharmacology
  15. Suriyakala G, Sathiyaraj S, Balasundaram M, Murugan K, Babujanarthanam R, Gandhi AD
    Bioprocess Biosyst Eng, 2023 Oct;46(10):1483-1498.
    PMID: 37552312 DOI: 10.1007/s00449-023-02915-z
    In the current scenario, many synthetic chemicals have used long-term to control pests and mosquitoes, leading to the resistance of strains and toxicity effect on human beings. To overcome the adverse problem in recent advances, the scientific community is looking into nanofabricated pesticides and mosquitoes. This study aims to synthesize the recyclable chitosan-coated cadmium nanoparticles (Ch-CdNps) using Plumeria alba flower extract, which was further applied for insecticidal and mosquitocidal activities. The synthesized Ch-CdNps were confirmed by UV spectroscopy and FTIR analysis. The XRD, TEM, and DLS results confirmed the crystallinity with a spherical shape at 80-100 nm. The insecticidal activity proves that Ch-CdNps inhibited Helicoverpa armigera and Spodoptera litura at 100 ppm. In mosquitocidal, LC50 values of larvicidal of 1st instar were 4.116, 4.33, and 4.564 µg/mL, and the remaining three stages of instars, pupicidal, adulticidal, longevity, fecundity, and ovicidal assays inhibit the Anopheles stephensi followed by Aedes aegypti and Culex quinquefasciatus. Further, the first-order kinetics of photocatalytic degradation of methylene blue and methyl orange was confirmed. Based on the obtained results, Ch-CdNps can inhibit the pest, mosquitoes, and photocatalytic degradation.
    Matched MeSH terms: Plant Extracts/chemistry
  16. Raja Mazlan RNA, Rukayadi Y, Maulidiani M, Ismail IS
    Molecules, 2018 Jul 16;23(7).
    PMID: 30012946 DOI: 10.3390/molecules23071730
    The aim of this study was to determine the effects of different solvents for extraction, liquid⁻liquid partition, and concentrations of extracts and fractions of Piper cubeba L. on anticariogenic; antibacterial and anti-inflammatory activity against oral bacteria. Furthermore, ¹H-Nuclear Magnetic Resonance (NMR) coupled with multivariate data analysis (MVDA) was applied to discriminate between the extracts and fractions and examine the metabolites that correlate to the bioactivities. All tested bacteria were susceptible to Piper cubeba L. extracts and fractions. Different solvents extraction, liquid⁻liquid partition and concentrations of extracts and fractions have partially influenced the antibacterial activity. MTT assay showed that P. cubeba L. extracts and fractions were not toxic to RAW 264.7 cells at selected concentrations. Anti-inflammatory activity evaluated by nitric oxide (NO) production in lipopolysaccharide (LPS) stimulated cells showed a reduction in NO production in cells treated with P. cubeba L. extracts and fractions, compared to those without treatment. Twelve putative metabolites have been identified, which are (1) cubebin, (2) yatein, (3) hinokinin, (4) dihydrocubebin, (5) dihydroclusin, (6) cubebinin, (7) magnosalin, (8) p-cymene, (9) piperidine, (10) cubebol, (11) d-germacrene and (12) ledol. Different extraction and liquid⁻liquid partition solvents caused separation in principal component analysis (PCA) models. The partial least squares (PLS) models showed that higher anticariogenic activity was related more to the polar solvents, despite some of the active metabolites also present in the non-polar solvents. Hence, P. cubeba L. extracts and fractions exhibited antibacterial and anti-inflammatory activity and have potential to be developed as the anticariogenic agent.
    Matched MeSH terms: Plant Extracts/chemistry*
  17. Chia WY, Kok H, Chew KW, Low SS, Show PL
    Bioengineered, 2021 Dec;12(1):1226-1237.
    PMID: 33858291 DOI: 10.1080/21655979.2021.1910432
    The world at large is facing a new threat with the emergence of the Coronavirus Disease 2019 (COVID-19) pandemic. Though imperceptible by the naked eye, the medical, sociological and economical implications caused by this newly discovered virus have been and will continue to be a great impediment to our lives. This health threat has already caused over two million deaths worldwide in the span of a year and its mortality rate is projected to continue rising. In this review, the potential of algae in combating the spread of COVID-19 is investigated since algal compounds have been tested against viruses and algal anti-inflammatory compounds have the potential to treat the severe symptoms of COVID-19. The possible utilization of algae in producing value-added products such as serological test kits, vaccines, and supplements that would either mitigate or hinder the continued health risks caused by the virus is prominent. Many of the characteristics in algae can provide insights on the development of microalgae to fight against SARS-CoV-2 or other viruses and contribute in manufacturing various green and high-value products.
    Matched MeSH terms: Plant Extracts/pharmacology*
  18. Chan EW, Wong SK
    J Integr Med, 2015 Nov;13(6):368-79.
    PMID: 26559362 DOI: 10.1016/S2095-4964(15)60208-4
    In this review, the phytochemistry and pharmacology of two ornamental gingers, Hedychium coronarium (butterfly ginger) and Alpinia purpurata (red ginger), are updated, and their botany and uses are described. Flowers of H. coronarium are large, showy, white, yellow or white with a yellow centre and highly fragrant. Inflorescences of A. purpurata are erect spikes with attractive red or pink bracts. Phytochemical investigations on the rhizomes of H. coronarium generated research interest globally. This resulted in the isolation of 53 labdane-type diterpenes, with little work done on the leaves and flowers. Pharmacological properties of H. coronarium included antioxidant, antibacterial, antifungal, cytotoxic, chemopreventive, anti-allergic, larvicidal, anthelminthic, analgesic, anti-inflammatory, anti-urolithiatic, anti-angiogenic, neuro-pharmacological, fibrinogenolytic, coagulant and hepatoprotective activities. On the contrary, little is known on the phytochemistry of A. purpurata with pharmacological properties of antioxidant, antibacterial, larvicidal, cytotoxic and vasodilator activities reported in the leaves and rhizomes. There is much disparity in terms of research effort within and between these two ornamental gingers.
    Matched MeSH terms: Plant Extracts/pharmacology*
  19. Yudthavorasit S, Wongravee K, Leepipatpiboon N
    Food Chem, 2014 Sep 01;158:101-11.
    PMID: 24731320 DOI: 10.1016/j.foodchem.2014.02.086
    Chromatographic fingerprints of gingers from five different ginger-producing countries (China, India, Malaysia, Thailand and Vietnam) were newly established to discriminate the origin of ginger. The pungent bioactive principles of ginger, gingerols and six other gingerol-related compounds were determined and identified. Their variations in HPLC profiles create the characteristic pattern of each origin by employing similarity analysis, hierarchical cluster analysis (HCA), principal component analysis (PCA) and linear discriminant analysis (LDA). As results, the ginger profiles tended to be grouped and separated on the basis of the geographical closeness of the countries of origin. An effective mathematical model with high predictive ability was obtained and chemical markers for each origin were also identified as the characteristic active compounds to differentiate the ginger origin. The proposed method is useful for quality control of ginger in case of origin labelling and to assess food authenticity issues.
    Matched MeSH terms: Plant Extracts/chemistry*
  20. Jabbari S, Abed DZ, Zakaria ZA, Mohammadi S
    Inflammopharmacology, 2023 Dec;31(6):3203-3216.
    PMID: 37792093 DOI: 10.1007/s10787-023-01342-6
    BACKGROUND: Chaerophyllum macropodum Boiss. (popularly known as "Jafari farangi kohestani") is a predominant medicinal plant traditionally utilized in the treatments of peritoneal inflammation and headache in Persian folk medicine. Here, we have revealed the anti-neuropathic and anti-nociceptive activities of C. macropodum leaves essential oil (CMEO) in addition to uncovering the possible mechanisms of action.

    METHODS: Formalin-induced paw licking model was used to assess the anti-nociceptive activity of CMEO and its major constituent, terpinolene (TP). The anti-nociceptive activity of these compounds was determined by investigating the roles of various non-opioid and NO-cGMP-K+ channels. Additionally, the anti-neuropathic potential of CMEO and TP was determined using cervical spinal cord contusion/CCS technique.

    RESULTS: The CMEO exerted significant anti-nociceptive activity with a remarkable activity seen in the second phase of formalin-induced paw licking model and this activity were remarkably reversed by pre-treatment of naloxone (an opioid antagonist). Pretreatment with several types of NO-cGMP-potassium channel pathway meaningfully reversed the anti-nociceptive potential of CMEO in phase II of formalin model. Moreover, pre-treatment with several antagonists of non-opioid receptors revealed that only the antagonist of TRPV-1, serotonin type 3, 5-HT2, α2 adrenergic, and CB1 receptors (capsaicin, ondansetron, ketanserin, yohimbine, and SR141716A, respectively) reversed CMEO anti-nociception. CMEO and TP also remarkably reversed hyperalgesia and mechanical allodynia in the CCS technique.

    CONCLUSION: The CMEO exerts anti-nociceptive and anti-neuropathic activities via the modulation of NO-cGMP potassium channel pathway, opioid as well as several non-opioid receptor activity. TP might partly contribute to the observed activities of CMEO.

    Matched MeSH terms: Plant Extracts/pharmacology
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links