Displaying publications 321 - 340 of 1309 in total

Abstract:
Sort:
  1. Leong SW, Lim TS, Tye GJ, Ismail A, Aziah I, Choong YS
    J Biol Phys, 2014 Sep;40(4):387-400.
    PMID: 25011632 DOI: 10.1007/s10867-014-9357-9
    In this work we assessed the suitability of two different lipid membranes for the simulation of a TolC protein from Salmonella enterica serovar Typhi. The TolC protein family is found in many pathogenic Gram-negative bacteria including Vibrio cholera and Pseudomonas aeruginosa and acts as an outer membrane channel for expulsion of drug and toxin from the cell. In S. typhi, the causative agent for typhoid fever, the TolC outer membrane protein is an antigen for the pathogen. The lipid environment is an important modulator of membrane protein structure and function. We evaluated the conformation of the TolC protein in the presence of DMPE and POPE bilayers using molecular dynamics simulation. The S. typhi TolC protein exhibited similar conformational dynamics to TolC and its homologues. Conformational flexibility of the protein is seen in the C-terminal, extracellular loops, and α-helical region. Despite differences in the two lipids, significant similarities in the motion of the protein in POPE and DMPE were observed, including the rotational motion of the C-terminal residues and the partially open extracellular loops. However, analysis of the trajectories demonstrated effects of hydrophobic matching of the TolC protein in the membrane, particularly in the lengthening of the lipids and subtle movements of the protein's β-barrel towards the lower leaflet in DMPE. The study exhibited the use of molecular dynamics simulation in revealing the differential effect of membrane proteins and lipids on each other. In this study, POPE is potentially a more suitable model for future simulation of the S. typhi TolC protein.
    Matched MeSH terms: Bacterial Outer Membrane Proteins/metabolism*
  2. Cacha LA, Poznanski RR
    J Integr Neurosci, 2014 Jun;13(2):253-92.
    PMID: 25012712 DOI: 10.1142/S0219635214400081
    A theoretical framework is developed based on the premise that brains evolved into sufficiently complex adaptive systems capable of instantiating genomic consciousness through self-awareness and complex interactions that recognize qualitatively the controlling factors of biological processes. Furthermore, our hypothesis assumes that the collective interactions in neurons yield macroergic effects, which can produce sufficiently strong electric energy fields for electronic excitations to take place on the surface of endogenous structures via alpha-helical integral proteins as electro-solitons. Specifically the process of radiative relaxation of the electro-solitons allows for the transfer of energy via interactions with deoxyribonucleic acid (DNA) molecules to induce conformational changes in DNA molecules producing an ultra weak non-thermal spontaneous emission of coherent biophotons through a quantum effect. The instantiation of coherent biophotons confined in spaces of DNA molecules guides the biophoton field to be instantaneously conducted along the axonal and neuronal arbors and in-between neurons and throughout the cerebral cortex (cortico-thalamic system) and subcortical areas (e.g., midbrain and hindbrain). Thus providing an informational character of the electric coherence of the brain - referred to as quantum coherence. The biophoton field is realized as a conscious field upon the re-absorption of biophotons by exciplex states of DNA molecules. Such quantum phenomenon brings about self-awareness and enables objectivity to have access to subjectivity in the unconscious. As such, subjective experiences can be recalled to consciousness as subjective conscious experiences or qualia through co-operative interactions between exciplex states of DNA molecules and biophotons leading to metabolic activity and energy transfer across proteins as a result of protein-ligand binding during protein-protein communication. The biophoton field as a conscious field is attributable to the resultant effect of specifying qualia from the metabolic energy field that is transported in macromolecular proteins throughout specific networks of neurons that are constantly transforming into more stable associable representations as molecular solitons. The metastability of subjective experiences based on resonant dynamics occurs when bottom-up patterns of neocortical excitatory activity are matched with top-down expectations as adaptive dynamic pressures. These dynamics of on-going activity patterns influenced by the environment and selected as the preferred subjective experience in terms of a functional field through functional interactions and biological laws are realized as subjectivity and actualized through functional integration as qualia. It is concluded that interactionism and not information processing is the key in understanding how consciousness bridges the explanatory gap between subjective experiences and their neural correlates in the transcendental brain.
    Matched MeSH terms: Proteins/metabolism
  3. Tan GC, Chan E, Molnar A, Sarkar R, Alexieva D, Isa IM, et al.
    Nucleic Acids Res, 2014 Aug;42(14):9424-35.
    PMID: 25056318 DOI: 10.1093/nar/gku656
    We have sequenced miRNA libraries from human embryonic, neural and foetal mesenchymal stem cells. We report that the majority of miRNA genes encode mature isomers that vary in size by one or more bases at the 3' and/or 5' end of the miRNA. Northern blotting for individual miRNAs showed that the proportions of isomiRs expressed by a single miRNA gene often differ between cell and tissue types. IsomiRs were readily co-immunoprecipitated with Argonaute proteins in vivo and were active in luciferase assays, indicating that they are functional. Bioinformatics analysis predicts substantial differences in targeting between miRNAs with minor 5' differences and in support of this we report that a 5' isomiR-9-1 gained the ability to inhibit the expression of DNMT3B and NCAM2 but lost the ability to inhibit CDH1 in vitro. This result was confirmed by the use of isomiR-specific sponges. Our analysis of the miRGator database indicates that a small percentage of human miRNA genes express isomiRs as the dominant transcript in certain cell types and analysis of miRBase shows that 5' isomiRs have replaced canonical miRNAs many times during evolution. This strongly indicates that isomiRs are of functional importance and have contributed to the evolution of miRNA genes.
    Matched MeSH terms: Argonaute Proteins/metabolism
  4. Vakhshiteh F, Allaudin ZN, Lila MA, Abbasiliasi S, Ajdari Z
    Mol Biotechnol, 2015 Jan;57(1):75-83.
    PMID: 25218408 DOI: 10.1007/s12033-014-9803-8
    Transplantation of islets of Langerhans that have been isolated from whole pancreas is an attractive alternative for the reversal of Type 1 diabetes. However, in vitro culture of isolated pancreatic islets has been reported to cause a decrease in glucose response over time. Hence, the improvement in islet culture conditions is an important goal in islet transplantation. Heme Oxygenase-1 (HO-1) is a stress protein that has been described as an inducible protein with the capacity of preventing apoptosis and cytoprotection via radical scavenging. Therefore, this study was aimed to assess the influence of endogenous HO-1 gene transfer on insulin secretion of caprine islets. The full-length cDNA sequence of Capra hircus HO-1 was determined using specific designed primers and rapid amplification of cDNA ends of pancreatic tissue. The HO-1 cDNA was then cloned into the prokaryotic expression vectors and transfected into caprine islets using lipid carriers. Efficiency of lipid carriers to transfect caprine islets was determined by flow cytometry. Insulin secretion assay was carried out by ovine insulin ELISA. The finding demonstrated that endogenous HO-1 gene transfer could improve caprine islet function in in vitro culture. Consequently, strategies using HO-1 gene transfer to islets might lead to better outcome in islet transplantation.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism
  5. Yeap WC, Namasivayam P, Ho CL
    Plant Sci, 2014 Oct;227:90-100.
    PMID: 25219311 DOI: 10.1016/j.plantsci.2014.07.005
    Plant cells contain a diverse repertoire of RNA-binding proteins (RBPs) that coordinate a network of post-transcriptional regulation. RBPs govern diverse developmental processes by modulating the gene expression of specific transcripts. Recent gene annotation and RNA sequencing clearly showed that heterogeneous nuclear ribonucleoprotein (hnRNP)-like proteins which form a family of RBPs, are also expressed in higher plants and serve specific plant functions. In addition to their involvement in post-transcriptional regulation from mRNA capping to translation, they are also involved in telomere regulation, gene silencing and regulation in chloroplast. Here, we review the involvement of plant hnRNP-like proteins in post-transcription regulation of RNA processes and their functional roles in control of plant developmental processes especially plant-specific functions including flowering, chloroplastic-specific mRNA regulation, long-distance phloem transportation and plant responses to environmental stresses.
    Matched MeSH terms: RNA-Binding Proteins/metabolism
  6. Nikbin S, Panandam JM, Yaakub H, Murugaiyah M, Sazili AQ
    Anim. Reprod. Sci., 2014 May;146(3-4):176-81.
    PMID: 24674824 DOI: 10.1016/j.anireprosci.2014.03.001
    The semen quality of bucks affects the reproduction performance of the herd and is influenced by genetic and non-genetic factors. Heat shock protein 70 (HSP70) is considered as an important gene affecting semen quality traits. The objectives of this study are to find single nucleotide polymorphisms in HSP70 coding region and their association with semen quality traits on Boer and Boer cross bucks. DNA isolated from 53 goats (36 pure South African Boer and 17 Boer crosses) was subjected to PCR amplification of the exon 1 region of the caprine HSP70 gene. Single-strand conformation polymorphism (SSCP) was used to detect polymorphisms and the variant DNA fragments were sequenced. Two synonymous SNPs (74A>C (ss836187517) and 191C>G (ss836187518)) were detected. Qualities of fresh and post-thaw semen were evaluated for sperm concentration, semen volume, sperm motility and velocity traits, live sperm percentage, and abnormal sperm rate. The C allele of ss836187517 and G allele of ss836187518 were at higher frequencies in both the breeds. The C allele of ss836187517 appeared to be the favorable allele for semen concentration, progressive motility of fresh semen, and motility and sperm lateral head displacement of post-thaw semen. A negative overdominance was observed for ss836187517 alleles on velocity traits of post-thaw semen. The C allele of ss836187518 was favorable for sperm concentration and progressive motility. Results herein suggest that the SNPs in HSP70 may affect on semen quality in tropical regions and specially on the potential of semen for freezing.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism*
  7. Choi SB, Lew LC, Hor KC, Liong MT
    Appl Biochem Biotechnol, 2014 May;173(1):129-42.
    PMID: 24648139 DOI: 10.1007/s12010-014-0822-5
    This study aimed at optimizing the production of hyaluronic acid by Lactobacillus acidophilus FTDC 1231 using response surface methodology and evaluating the effects of divalent metal ions along the production pathway using molecular docking. Among different divalent metal ions that were screened, only iron (II) sulphate and copper (II) sulphate significantly (P 
    Matched MeSH terms: Bacterial Proteins/metabolism
  8. Elengoe A, Naser MA, Hamdan S
    Int J Mol Sci, 2014;15(4):6797-814.
    PMID: 24758925 DOI: 10.3390/ijms15046797
    The purpose of exploring protein interactions between human adenovirus and heat shock protein 70 is to exploit a potentially synergistic interaction to enhance anti-tumoral efficacy and decrease toxicity in cancer treatment. However, the protein interaction of Hsp70 with E1A32 kDa of human adenovirus serotype 5 remains to be elucidated. In this study, two residues of ATPase domain of human heat shock 70 kDa protein 1 (PDB: 1 HJO) were mutated. 3D mutant models (K71L and T204V) using PyMol software were then constructed. The structures were evaluated by PROCHECK, ProQ, ERRAT, Verify 3D and ProSA modules. All evidence suggests that all protein models are acceptable and of good quality. The E1A32 kDa motif was retrieved from UniProt (P03255), as well as subjected to docking interaction with NBD, K71L and T204V, using the Autodock 4.2 program. The best lowest binding energy value of -9.09 kcal/mol was selected for novel T204V. Moreover, the protein-ligand complex structures were validated by RMSD, RMSF, hydrogen bonds and salt bridge analysis. This revealed that the T204V-E1A32 kDa motif complex was the most stable among all three complex structures. This study provides information about the interaction between Hsp70 and the E1A32 kDa motif, which emphasizes future perspectives to design rational drugs and vaccines in cancer therapy.
    Matched MeSH terms: HSP70 Heat-Shock Proteins/metabolism
  9. Fong MY, Lau YL, Chang PY, Anthony CN
    Parasit Vectors, 2014;7:161.
    PMID: 24693997 DOI: 10.1186/1756-3305-7-161
    The monkey malaria parasite Plasmodium knowlesi is now recognized as the fifth species of Plasmodium that can cause human malaria. Like the region II of the Duffy binding protein of P. vivax (PvDBPII), the region II of the P. knowlesi Duffy binding protein (PkDBPαII) plays an essential role in the parasite's invasion into the host's erythrocyte. Numerous polymorphism studies have been carried out on PvDBPII, but none has been reported on PkDBPαII. In this study, the genetic diversity, haplotyes and allele groups of PkDBPαII of P. knowlesi clinical isolates from Peninsular Malaysia were investigated.
    Matched MeSH terms: Protozoan Proteins/metabolism*
  10. Ng ZX, Chua KH, Kuppusamy UR
    Food Chem, 2014 Apr 1;148:155-61.
    PMID: 24262540 DOI: 10.1016/j.foodchem.2013.10.025
    This study aimed to investigate the changes in the proteome of bitter gourd prior to and after subjecting to boiling and microwaving. A comparative analysis of the proteome profiles of raw and thermally treated bitter gourds was performed using 2D-DIGE. The protein content and number of protein spots in raw sample was higher when compared to the cooked samples. Qualitative analysis revealed that 103 (boiled sample) and 110 (microwaved sample) protein spots were up regulated whereas 120 (boiled sample) and 107 (microwaved sample) protein spots were down regulated. Ten protein spots with the highest significant fold change in the cooked samples were involved in carbohydrate/energy metabolisms and stress responses. Small heat shock proteins, superoxide dismutase, quinone oxidoreductase, UDP-glucose pyrophosphorylase and phosphoglycerate kinase play a role in heat-stress-mediated protection of bitter gourd. This study suggests that appropriate heat treatment (cooking methods) can lead to induction of selected proteins in bitter gourd.
    Matched MeSH terms: Plant Proteins/metabolism
  11. Lew LC, Choi SB, Tan PL, Liong MT
    J Appl Microbiol, 2014 Mar;116(3):644-53.
    PMID: 24267975 DOI: 10.1111/jam.12399
    The study aimed to evaluate the effects of Mn(2+) and Mg(2+) on lactic acid production using response surface methodology and to further study their effects on interactions between the enzymes and substrates along the hexose monophosphate pathway using a molecular modelling approach.
    Matched MeSH terms: Bacterial Proteins/metabolism
  12. Shafie NH, Mohd Esa N, Ithnin H, Md Akim A, Saad N, Pandurangan AK
    Biomed Res Int, 2013;2013:681027.
    PMID: 24260743 DOI: 10.1155/2013/681027
    Nutritional or dietary factors have drawn attention due to their potential as an effective chemopreventive agent, which is considered a more rational strategy in cancer treatment. This study was designed to evaluate the effect of IP₆ extracted from rice bran on azoxymethane- (AOM-) induced colorectal cancer (CRC) in rats. Initially, male Sprague Dawley rats were divided into 5 groups, with 6 rats in each group. The rats received two intraperitoneal (i.p.) injections of AOM in saline (15 mg/kg body weight) over a 2-week period to induce CRC. IP₆ was given in three concentrations, 0.2% (w/v), 0.5% (w/v), and 1.0% (w/v), via drinking water for 16 weeks. The deregulation of the Wnt/β-catenin signaling pathway and the expression of cyclooxygenase (COX)-2 have been implicated in colorectal tumorigenesis. β-Catenin and COX-2 expressions were analysed using the quantitative RT-PCR and Western blotting. Herein, we reported that the administration of IP₆ markedly suppressed the incidence of tumors when compared to the control. Interestingly, the administration of IP₆ had also markedly decreased β-catenin and COX-2 in colon tumors. Thus, the downregulation of β-catenin and COX-2 could play a role in inhibiting the CRC development induced by IP₆ and thereby act as a potent anticancer agent.
    Matched MeSH terms: Neoplasm Proteins/metabolism
  13. Nezhadahmadi A, Prodhan ZH, Faruq G
    ScientificWorldJournal, 2013;2013:610721.
    PMID: 24319376 DOI: 10.1155/2013/610721
    Drought is one of the most important phenomena which limit crops' production and yield. Crops demonstrate various morphological, physiological, biochemical, and molecular responses to tackle drought stress. Plants' vegetative and reproductive stages are intensively influenced by drought stress. Drought tolerance is a complicated trait which is controlled by polygenes and their expressions are influenced by various environmental elements. This means that breeding for this trait is so difficult and new molecular methods such as molecular markers, quantitative trait loci (QTL) mapping strategies, and expression patterns of genes should be applied to produce drought tolerant genotypes. In wheat, there are several genes which are responsible for drought stress tolerance and produce different types of enzymes and proteins for instance, late embryogenesis abundant (lea), responsive to abscisic acid (Rab), rubisco, helicase, proline, glutathione-S-transferase (GST), and carbohydrates during drought stress. This review paper has concentrated on the study of water limitation and its effects on morphological, physiological, biochemical, and molecular responses of wheat with the possible losses caused by drought stress.
    Matched MeSH terms: Plant Proteins/metabolism*
  14. Ling AP, Ung YC, Hussein S, Harun AR, Tanaka A, Yoshihiro H
    J Zhejiang Univ Sci B, 2013 Dec;14(12):1132-43.
    PMID: 24302713 DOI: 10.1631/jzus.B1200126
    Heavy ion beam, which has emerged as a new mutagen in the mutation breeding of crops and ornamental plants, is expected to result in the induction of novel mutations. This study investigates the morphological and biochemical responses of Oryza sativa toward different doses of carbon ion beam irradiation.
    Matched MeSH terms: Plant Proteins/metabolism*
  15. Mohd Yusoff MZ, Hashiguchi Y, Maeda T, Wood TK
    Biochem Biophys Res Commun, 2013 Oct 4;439(4):576-9.
    PMID: 24025676 DOI: 10.1016/j.bbrc.2013.09.016
    Pseudogenes are considered to be nonfunctional genes that lack a physiological role. By screening 3985 Escherichia coli mutants using chemochromic membranes, we found four pseudogenes involved in hydrogen metabolism. Knockouts of pseudogenes ydfW and ypdJ had a defective hydrogen phenotype on glucose and formate, respectively. Also, the knockout of pseudogene yqiG formed hydrogen from formate but not from glucose. For the yqiG mutant, 100% hydrogen recovery was obtained by the complementation of YqiG via a plasmid. The knockout of pseudogene ylcE showed hydrogen deficiency in minimal media which suggested that the role of YlcE is associated with cell growth. Hence, the products of these four pseudogenes play an important physiological role in hydrogen production in E. coli.
    Matched MeSH terms: Escherichia coli Proteins/metabolism
  16. Abdullah SN, Farmer EA, Spargo L, Logan R, Gully N
    Anaerobe, 2013 Oct;23:102-8.
    PMID: 23856045 DOI: 10.1016/j.anaerobe.2013.07.001
    While a group of oral commensals have been implicated in the aetiology of chronic periodontitis; the asaccharolytic Gram negative anaerobe Porphyromonas gingivalis is most commonly reported to be associated with severe forms of the disease. Although a variety of human tissues can produce a number of peptidylarginine deiminase (PAD), enzymes that convert peptide bound arginine residues to citrulline, P. gingivalis is one of the few prokaryotes known to express PAD. Protein and peptide citrullination are important in the development of rheumatoid arthritis and in recent years a number of authors have suggested a possible link between periodontitis and rheumatoid arthritis (RA). Indeed, some have linked P. gingivalis directly to RA via the action of PAD. Accordingly, the prime purpose of this study was to further characterise PAD in P. gingivalis cells particular emphasis on substrate specificity, using arginine containing peptides and RA relevant proteins.
    Matched MeSH terms: Membrane Proteins/metabolism
  17. Barbour A, Philip K, Muniandy S
    PLoS One, 2013;8(10):e77751.
    PMID: 24147072 DOI: 10.1371/journal.pone.0077751
    BACKGROUND: Lantibiotics are small lanthionine-containing bacteriocins produced by lactic acid bacteria. Salivaricin 9 is a newly discovered lantibiotic produced by Streptococcus salivarius. In this study we present the mechanism of action of salivaricin 9 and some of its properties. Also we developed new methods to produce and purify the lantibiotic from strain NU10.

    METHODOLOGY/PRINCIPAL FINDINGS: Salivaricin 9 was found to be auto-regulated when an induction assay was applied and this finding was used to develop a successful salivaricin 9 production system in liquid medium. A combination of XAD-16 and cation exchange chromatography was used to purify the secondary metabolite which was shown to have a molecular weight of approximately 3000 Da by SDS-PAGE. MALDI-TOF MS analysis indicated the presence of salivaricin 9, a 2560 Da lantibiotic. Salivaricin 9 is a bactericidal molecule targeting the cytoplasmic membrane of sensitive cells. The membrane permeabilization assay showed that salivaricin 9 penetrated the cytoplasmic membrane and induced pore formation which resulted in cell death. The morphological changes of test bacterial strains incubated with salivaricin 9 were visualized using Scanning Electron Microscopy which confirmed a pore forming mechanism of inhibition. Salivaricin 9 retained biological stability when exposed to high temperature (90-100°C) and stayed bioactive at pH ranging 2 to 10. When treated with proteinase K or peptidase, salivaricin 9 lost all antimicrobial activity, while it remained active when treated with lyticase, catalase and certain detergents.

    CONCLUSION: The mechanism of antimicrobial action of a newly discovered lantibiotic salivaricin 9 was elucidated in this study. Salivaricin 9 penetrated the cytoplasmic membrane of its targeted cells and induced pore formation. This project has given new insights on lantibiotic peptides produced by S. salivarius isolated from the oral cavities of Malaysian subjects.

    Matched MeSH terms: Bacterial Proteins/metabolism*
  18. Bayat O, Baradaran A, Ariff A, Mohamad R, Rahim RA
    Biotechnol Lett, 2014 Mar;36(3):581-5.
    PMID: 24185903 DOI: 10.1007/s10529-013-1390-4
    Human interferon alpha (IFN-α) was expressed in two strains of Lactococcus lactis by aid of two promoters (P32 and Pnis) giving rise to two recombinant strains: MG:IFN and NZ:IFN, respectively. The expression of IFN was confirmed by ELISA and western blotting. Highest production was achieved using glucose for growth of both recombinant strains with nisin, used for induction of the recombinant strain with Pnis promoter, at 30 ng/ml. The optimum time for MG:IFN was 9 h and for NZ:IFN was 4.5 h. The highest productions by MG:IFN and NZ:IFN were 1.9 and 2.4 μg IFN/l, respectively. Both of the expressed IFNs showed bioactivities of 1.9 × 10(6) IU/mg that were acceptable for further clinical studies.
    Matched MeSH terms: Recombinant Proteins/metabolism
  19. Narayanan K, Lee CW, Radu A, Sim EU
    Anal Biochem, 2013 Aug 15;439(2):142-4.
    PMID: 23608053 DOI: 10.1016/j.ab.2013.04.010
    Successful gene delivery into mammalian cells using bactofection requires entry of the bacterial vector via cell surface integrin receptors followed by release of plasmid DNA into the cellular environment. We show, for the first time, that addition of the DNA transfection reagent Lipofectamine improves entry of invasive Escherichia coli into HeLa cells and enhances up to 2.8-fold green fluorescent protein (GFP) expression from a reporter plasmid. The addition of Lipofectamine may be applicable to other bacterial vectors to increase their DNA delivery efficiency into mammalian cells.
    Matched MeSH terms: Green Fluorescent Proteins/metabolism*
  20. Choi SB, Normi YM, Wahab HA
    BMC Bioinformatics, 2011;12 Suppl 13:S11.
    PMID: 22372825 DOI: 10.1186/1471-2105-12-S13-S11
    Previously, the hypothetical protein, KPN00728 from Klebsiella pneumoniae MGH78578 was the Succinate dehydrogenase (SDH) chain C subunit via structural prediction and molecular docking simulation studies. However, due to limitation in docking simulation, an in-depth understanding of how SDH interaction occurs across the transmembrane of mitochondria could not be provided.
    Matched MeSH terms: Bacterial Proteins/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links