METHODS: We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping.
RESULTS: No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58).
CONCLUSION: The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.
METHODS: A systematic review was performed for all the articles retrieved from multiple databases, up until March 2017. Data were extracted from all eligible studies, and meta-analysis was carried out using RevMan 5.3 and R package 3.2.1. The strength of association between each studied polymorphism and ischemic stroke risk was measured as odds ratios (ORs) and 95% confidence intervals (CIs), under fixed- and random-effect models.
RESULTS: A total of 79 studies reporting on the association between the studied polymorphisms and ischemic stroke risk were identified. The pooled data indicated that all genetic models of APOA5 rs662799 (ORs = 1.23-1.43), allelic and over-dominant models of APOA5 rs3135506 (ORs = 1.77-1.97), APOB rs1801701 (ORs = 1.72-2.13) and APOB rs1042031 (ORs = 1.66-1.88) as well as dominant model of ABCA1 rs2230806 (OR = 1.31) were significantly associated with higher risk of ischemic stroke. However, no significant associations were observed between ischemic stroke and the other five polymorphisms, namely ApoB (rs693) and APOC3 (rs4520, rs5128, rs2854116 and rs2854117), under any genetic model.
CONCLUSIONS: The present meta-analysis confirmed a significant association of APOA5 rs662799 CC, APOA5 rs3135506 CG, APOB rs1801701 GA, APOB rs1042031 GA and ABCA1 rs2230806 GG with increased risk of ischemic stroke.
METHODS: The American Heart Association, through its Statistics Committee, continuously monitors and evaluates sources of data on heart disease and stroke in the United States to provide the most current information available in the annual Statistical Update. The 2021 Statistical Update is the product of a full year's worth of effort by dedicated volunteer clinicians and scientists, committed government professionals, and American Heart Association staff members. This year's edition includes data on the monitoring and benefits of cardiovascular health in the population, an enhanced focus on social determinants of health, adverse pregnancy outcomes, vascular contributions to brain health, the global burden of cardiovascular disease, and further evidence-based approaches to changing behaviors related to cardiovascular disease.
RESULTS: Each of the 27 chapters in the Statistical Update focuses on a different topic related to heart disease and stroke statistics.
CONCLUSIONS: The Statistical Update represents a critical resource for the lay public, policy makers, media professionals, clinicians, health care administrators, researchers, health advocates, and others seeking the best available data on these factors and conditions.
OBJECTIVE: We performed an analysis of genetic variants associated with leukocyte telomere length to assess the relationship between telomere length and RCC risk using Mendelian randomization, an approach unaffected by biases from temporal variability and reverse causation that might have affected earlier investigations.
DESIGN, SETTING, AND PARTICIPANTS: Genotypes from nine telomere length-associated variants for 10 784 cases and 20 406 cancer-free controls from six genome-wide association studies (GWAS) of RCC were aggregated into a weighted genetic risk score (GRS) predictive of leukocyte telomere length.
OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: Odds ratios (ORs) relating the GRS and RCC risk were computed in individual GWAS datasets and combined by meta-analysis.
RESULTS AND LIMITATIONS: Longer genetically inferred telomere length was associated with an increased risk of RCC (OR=2.07 per predicted kilobase increase, 95% confidence interval [CI]:=1.70-2.53, p<0.0001). As a sensitivity analysis, we excluded two telomere length variants in linkage disequilibrium (R2>0.5) with GWAS-identified RCC risk variants (rs10936599 and rs9420907) from the telomere length GRS; despite this exclusion, a statistically significant association between the GRS and RCC risk persisted (OR=1.73, 95% CI=1.36-2.21, p<0.0001). Exploratory analyses for individual histologic subtypes suggested comparable associations with the telomere length GRS for clear cell (N=5573, OR=1.93, 95% CI=1.50-2.49, p<0.0001), papillary (N=573, OR=1.96, 95% CI=1.01-3.81, p=0.046), and chromophobe RCC (N=203, OR=2.37, 95% CI=0.78-7.17, p=0.13).
CONCLUSIONS: Our investigation adds to the growing body of evidence indicating some aspect of longer telomere length is important for RCC risk.
PATIENT SUMMARY: Telomeres are segments of DNA at chromosome ends that maintain chromosomal stability. Our study investigated the relationship between genetic variants associated with telomere length and renal cell carcinoma risk. We found evidence suggesting individuals with inherited predisposition to longer telomere length are at increased risk of developing renal cell carcinoma.
METHODS: We conducted a cross-sectional study consisting of 1551 participants from the National Heart, Lung and Blood Institute Family Heart Study to assess the relation of Apo E polymorphism with the prevalence of MetS. MetS was defined according to the American Heart Association-National Heart, Lung and Blood Institute-International Diabetes Federation-World Health Organization harmonized criteria. We used generalized estimating equations to estimate adjusted odds ratios (ORs) for prevalent MetS and the Bonferroni correction to account for multiple testing in the secondary analysis.
RESULTS: Our study population had a mean age (standard deviation) of 56.5 (11.0) years, and 49.7% had MetS. There was no association between the Apo E genotypes and the MetS. The multivariable adjusted ORs (95% confidence interval) were 1.00 (reference), 1.26 (0.31-5.21), 0.89 (0.62-1.29), 1.13 (0.61-2.10), 1.13 (0.88-1.47) and 1.87 (0.91-3.85) for the Ɛ3/Ɛ3, Ɛ2/Ɛ2, Ɛ2/Ɛ3, Ɛ2/Ɛ4, Ɛ3/Ɛ4 and Ɛ4/Ɛ4 genotypes, respectively. In a secondary analysis, Ɛ2/Ɛ3 genotype was associated with 41% lower prevalence odds of low high-density lipoprotein [multivariable adjusted ORs (95% confidence interval) = 0.59 (0.36-0.95)] compared with Ɛ3/Ɛ3 genotype.
CONCLUSIONS: Our findings do not support an association between Apo E polymorphism and MetS in a multicentre population-based study of predominantly White US men and women.