Displaying publications 321 - 335 of 335 in total

Abstract:
Sort:
  1. Rapi HS, Che Soh N', Mohd Azam NS, Maulidiani M, Assaw S, Haron MN, et al.
    PMID: 33299445 DOI: 10.1155/2020/1408926
    Wound healing is a well-coordinated process that restores skin integrity upon injury. However, some wound treatment poses harmful effects on the skin, which delay the normal wound healing process. Marphysa moribidii, a marine baitworm or polychaete, represents unique ability to regenerate posterior segment after injury, which may be beneficial in the wound healing treatment. The effectiveness of the polychaete as wound healing treatment was discovered through skin irritation, microbial testing, animal wound model, and chemical identifications. Three polychaete extracts (PE) emulsifying ointment (0.1%, 0.5%, and 1.0%) were topically applied to the full thickness wound model once daily for 14 days. Interestingly, PE 1.0% revealed the most rapid wound healing effects as compared to other treatments, including gamat (sea cucumber) oil (15% w/v) and acriflavine (0.1% w/v). Histopathological analysis using Masson's trichrome staining further confirms that PE treated wound exhibited minimal scar, high collagen deposition, and the emergence of neovascularisation. The extract also displayed a minimum inhibitory concentration (MIC) of 0.4 g/ml against Escherichia coli and absence of skin irritation, infectious bacteria, and heavy metals from the extract. Moreover, chemical compounds such as alkaloid, flavonoid, amino acids, and organic acid were detected in M. moribidii extracts, which could contribute to wound healing activity. In conclusion, this study further justifies the beneficial use of polychaete in treating wound healing and could be developed as a novel bioactive agent in nutraceuticals and pharmaceutical drugs.
    Matched MeSH terms: Alkaloids
  2. Shahruzaman SH, Mustafa MF, Ramli S, Maniam S, Fakurazi S, Maniam S
    PMID: 31178918 DOI: 10.1155/2019/9607590
    Breast cancer is the leading cause of cancer death in women in over 100 countries worldwide and accounts for almost 1 in 4 cancer cases among women. Baeckea frutescens of the family Myrtaceae has been used in traditional medicine and is known to possess antibacterial, antipyretic, and cytoprotective properties. In this study, we investigated the role of Baeckea frutescens branches extracts against human breast cancer cells. Baeckea frutescens branches extracts were prepared using Soxhlet apparatus with solvents of different polarity. The selective cytotoxic activity and the glucose consumption rate of Baeckea frutescens branches extracts of various concentrations (20 to 160 ug/ml) at 24-, 48-, and 72-hour time points were studied using MTT and glucose uptake assay. The IC50 values in human breast cancer (MCF-7 and MDA-MB-231) and mammary breast (MCF10A) cell lines were determined. Apoptotic study using AO/PI double staining was performed using fluorescent microscopy. The glucose uptake was measured using 2-NBDG, a fluorescent glucose analogue. The phytochemical screening of major secondary metabolites in plants was performed. This study reports that Baeckea frutescens branches extracts showed potent selective cytotoxic activity against MCF-7 cells compared to MDA-MB-231 cells after 72 hours of treatment. Evidence of early apoptosis which includes membrane blebbing and chromatin condensation was observed after 72 hours of treatment with Baeckea frutescens branches extracts. Interestingly, for the glucose uptake assay, the inhibition was observed as early as 24 hours upon treatment. All Baeckea frutescens extracts showed the presence of major secondary metabolites such as tannin, triterpenoid, flavonoid, and phenol. However, alkaloid level was unable to be determined. The identification of Baeckea frutescens and its possible role in selectively inhibiting glucose consumption in breast cancer cells defines a new role of natural product that can be utilised as an effective agent that regulates metabolic reprogramming in breast cancer.
    Matched MeSH terms: Alkaloids
  3. Yusoff NH, Suhaimi FW, Vadivelu RK, Hassan Z, Rümler A, Rotter A, et al.
    Addict Biol, 2016 Jan;21(1):98-110.
    PMID: 25262913 DOI: 10.1111/adb.12185
    Mitragynine is the major psychoactive alkaloid of the plant kratom/ketum. Kratom is widely used in Southeast Asia as a recreational drug, and increasingly appears as a pure compound or a component of 'herbal high' preparations in the Western world. While mitragynine/kratom may have analgesic, muscle relaxant and anti-inflammatory effects, its addictive properties and effects on cognitive performance are unknown. We isolated mitragynine from the plant and performed a thorough investigation of its behavioural effects in rats and mice. Here we describe an addictive profile and cognitive impairments of acute and chronic mitragynine administration, which closely resembles that of morphine. Acute mitragynine has complex effects on locomotor activity. Repeated administration induces locomotor sensitization, anxiolysis and conditioned place preference, enhances expression of dopamine transporter- and dopamine receptor-regulating factor mRNA in the mesencephalon. While there was no increase in spontaneous locomotor activity during withdrawal, animals showed hypersensitivity towards small challenging doses for up to 14 days. Severe somatic withdrawal signs developed after 12 hours, and increased level of anxiety became evident after 24 hours of withdrawal. Acute mitragynine independently impaired passive avoidance learning, memory consolidation and retrieval, possibly mediated by a disruption of cortical oscillatory activity, including the suppression of low-frequency rhythms (delta and theta) in the electrocorticogram. Chronic mitragynine administration led to impaired passive avoidance and object recognition learning. Altogether, these findings provide evidence for an addiction potential with cognitive impairments for mitragynine, which suggest its classification as a harmful drug.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/pharmacology*
  4. Sasidharan S, Sumathi V, Jegathambigai NR, Latha LY
    Nat Prod Res, 2011 Dec;25(20):1982-7.
    PMID: 21707251 DOI: 10.1080/14786419.2010.523703
    Diabetes mellitus is a global disease that is increasing in an alarming rate. The present study was undertaken to study the antidiabetic effect of the ethanol extracts of Carica papaya and Pandanus amaryfollius on streptozotocin-induced diabetic mice. The results of the present study indicated that there was no significant difference in the body weight of the treated groups when compared to diabetic control. Whereas, there was significant (P 
    Matched MeSH terms: Alkaloids/analysis
  5. Singh D, Yeou Chear NJ, Narayanan S, Leon F, Sharma A, McCurdy CR, et al.
    J Ethnopharmacol, 2020 Mar 01;249:112462.
    PMID: 31816368 DOI: 10.1016/j.jep.2019.112462
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa) is a native medicinal plant of Southeast Asia widely reported to be used to reduce opioid dependence and mitigate withdrawal symptoms. There is also evidence to suggest that opioid poly-drug users were using kratom to abstain from opioids.

    AIM OF THE STUDY: To determine the patterns and reasons for kratom use among current and former opioid poly-drug users in Malaysia.

    MATERIALS AND METHODS: A total of 204 opioid poly-drug users (142 current users vs. 62 former users) with current kratom use history were enrolled into this cross-sectional study. A validated UPLC-MS/MS method was used to evaluate the alkaloid content of a kratom street sample.

    RESULTS: Results from Chi-square analysis showed that there were no significant differences in demographic characteristics between current and former opioid poly-drug users except with respect to marital status. Current users had higher odds of being single (OR: 2.2: 95%CI: 1.21-4.11; p 

    Matched MeSH terms: Secologanin Tryptamine Alkaloids/analysis
  6. Ramu A, Kathiresan S, Ali Ahmed B
    Phytomedicine, 2017 Sep 15;33:69-76.
    PMID: 28887922 DOI: 10.1016/j.phymed.2017.05.008
    BACKGROUND: Transforming growth factor-β (TGF-β) and its receptors are considered as a novel target in cancer chemotherapy. Gramine, an indole alkaloid, possesses various pharmacological properties including antiproliferative and anticancer. However, the anti-angiogenic property remains unexplored.

    PURPOSE: The present study was designed to evaluate the anti-angiogenic and apoptosis induction properties of gramine through inhibiting TGF-β on DMBA induced oral squamous cell carcinoma (OSCC) in the hamster buccal pouch (HBP).

    METHODS: The effects of gramine on TGF-β signalling in DMBA induced carcinogenic events such as angiogenesis and apoptosis were analysed by studying the mRNA expression using RT-PCR, protein expression by western blot and histopathological analysis using haematoxylin and eosin (H & E) staining.

    RESULTS: Gramine significantly inhibited phosphorylation and nuclear translocation of Smad2 and Smad4 by blocking activity of the TGFβ-RII, RI and activation of inhibitory Smad7. Gramine inhibited angiogenic markers such as MMP-2, MMP-9, HIF-1α, VEGF, and VEGF-R2 as well as increased TIMP-2 expression. Furthermore, gramine induced apoptosis in DMBA induced tumour bearing animals by up regulating the pro apoptotic proteins Bax, cytochrome C, apaf-1, caspase-9 caspase-3 and PARP.

    CONCLUSION: In this study, we clearly demonstrated that gramine treatment diminishes angiogenesis and induces apoptosis in hamster buccal pouch (HBP) carcinogenesis by modulating TGF-β signals.

    Matched MeSH terms: Alkaloids/pharmacology*
  7. Abubakar IB, Lim KH, Kam TS, Loh HS
    Phytomedicine, 2017 Jul 01;30:74-84.
    PMID: 28545672 DOI: 10.1016/j.phymed.2017.03.004
    BACKGROUND: γ-Tocotrienol, a vitamin E isomer possesses pronounced in vitro anticancer activities. However, the in vivo potency has been limited by hardly achievable therapeutic levels owing to inefficient high-dose oral delivery which leads to subsequent metabolic degradation. Jerantinine A, an Aspidosperma alkaloid, originally isolated from Tabernaemontana corymbosa, has proved to possess interesting anticancer activities. However, jerantinine A also induces toxicity to non-cancerous cells.

    PURPOSE: We adopted a combinatorial approach with the joint application of γ-tocotrienol and jerantinine A at lower concentrations in order to minimize toxicity towards non-cancerous cells while improving the potency on brain cancer cells.

    METHODS: The antiproliferative potency of individual γ-tocotrienol and jerantinine A as well as combined in low-concentration was firstly evaluated on U87MG cancer and MRC5 normal cells. Morphological changes, DNA damage patterns, cell cycle arrests and the effects of individual and combined low-concentration compounds on microtubules were then investigated. Finally, the potential roles of caspase enzymes and apoptosis-related proteins in mediating the apoptotic mechanisms were investigated using apoptosis antibody array, ELISA and Western blotting analysis.

    RESULTS: Combinatorial study between γ-tocotrienol at a concentration range (0-24µg/ml) and fixed IC20 concentration of jerantinine A (0.16µg/ml) induced a potent antiproliferative effect on U87MG cells and led to a reduction on the new half maximal inhibitory concentration of γ-tocotrienol (i.e.tIC50=1.29µg/ml) as compared to that of individual γ-tocotrienol (i.e. IC50=3.17µg/ml). A reduction on undesirable toxicity to MRC5 normal cells was also observed. G0/G1 cell cycle arrest was evident on U87MG cells receiving IC50 of individual γ-tocotrienol and combined low-concentration compounds (1.29µg/ml γ-tocotrienol + 0.16µg/ml jerantinine A), whereas, a profound G2/M arrest was evident on cells treated with IC50 of individual jerantinine A. Additionally, individual jerantinine A and combined compounds (except individual γ-tocotrienol) caused a disruption of microtubule networks triggering Fas- and p53-induced apoptosis mediated via the death receptor and mitochondrial pathways.

    CONCLUSIONS: These findings demonstrated that the combined use of lower concentrations of γ-tocotrienol and jerantinine A induced potent cytotoxic effects on U87MG cancer cells resulting in a reduction on the required individual concentrations and thereby minimizing toxicity of jerantinine A towards non-cancerous MRC5 cells as well as probably overcoming the high-dose limiting application of γ-tocotrienol. The multi-targeted mechanisms of action of the combination approach have shown a therapeutic potential against brain cancer in vitro and therefore, further in vivo investigations using a suitable animal model should be the way forward.

    Matched MeSH terms: Indole Alkaloids/administration & dosage
  8. Fakurazi S, Rahman SA, Hidayat MT, Ithnin H, Moklas MA, Arulselvan P
    Molecules, 2013 Jan 04;18(1):666-81.
    PMID: 23292329 DOI: 10.3390/molecules18010666
    Mitragynine (MG) is the major active alkaloid found in Mitragyna speciosa Korth. In the present study, we investigated the enhancement of analgesic action of MG when combined with morphine and the effect of the combination on the development of tolerance towards morphine. Mice were administered intraperitoneally with a dose of MG (15 and 25 mg/kg b.wt) combined with morphine (5 mg/kg b.wt) respectively for 9 days. The antinociceptive effect was evaluated by a hot plate test. The protein expression of cyclic adenosine monophosphate (cAMP) and cAMP response element binding (CREB) was analyzed by immunoblot. Toxicological parameters especially liver and kidney function tests were assessed after the combination treatment with MG and morphine. The concurrent administration of MG and morphine showed significant (p < 0.05) increase in latency time when compared to morphine alone group and the outstanding analgesic effects in the combination regimens were maintained until day 9. For the protein expression, there was a significant increment of cAMP and CREB levels (p < 0.05) in group treated with 5 mg/kg morphine but there was no significant change of these protein expressions when MG was combined with morphine. There was a significant changes in toxicological parameters of various treated groups. The combination treatment of MG and morphine effectively reduce the tolerance due to the chronic administration of morphine.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids/administration & dosage*
  9. Nik Zainuddin NAS, Muhammad H, Nik Hassan NF, Othman NH, Zakaria Y
    J Pharm Bioallied Sci, 2020 Nov;12(Suppl 2):S768-S776.
    PMID: 33828376 DOI: 10.4103/jpbs.JPBS_262_19
    Introduction: Cervical cancer is a leading cause of death in women. Current cancer treatment comes with side effects. Clinacanthus nutans has been known traditionally to treat cancer. This study was aimed to characterize C. nutans standardized fraction (SF1) and to investigate its anticancer mechanism against SiHa cells.

    Materials and Methods: SF1 was produced by optimized methodology for bioassay-guided fractionation. Fourier transform infrared (FTIR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) were carried out to characterize the SF1. SF1 was screened for cytotoxicity activity toward HeLa, SiHa, and normal cells (NIH) cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay. The anticancer mechanism of SF1 was evaluated toward SiHa cells, which showed highest cytotoxicity toward SF1 treatment. The mechanism includes cell cycle progression and protein expression, which was detected using specific antibody-conjugated fluorescent dye, p53-FITC, by flow cytometry.

    Results: Major constituents of SF1 were alkaloids with amines as functional group. SF1 showed highest cytotoxic activity against SiHa (half-maximal inhibitory concentration [IC50] < 10 µg/mL) compared to HeLa cells. Cytoselectivity of SF1 was observed with no IC50 detected on normal NIH cells. On flow cytometry analysis, SF1 was able to induce apoptosis on SiHa cells by arresting cell cycle at G1/S and upregulation of p53 protein.

    Conclusion: SF1 showed anticancer activity by inducing apoptosis through arrested G1/S cell cycle checkpoint-mediated mitochondrial pathway.

    Matched MeSH terms: Alkaloids
  10. Muhammad G, Hussain MA, Jantan I, Bukhari SNA
    Compr Rev Food Sci Food Saf, 2016 Mar;15(2):303-315.
    PMID: 33371596 DOI: 10.1111/1541-4337.12184
    Mimosa pudica Linn. (Family: Mimosaceae) is used as an ornamental plant due to its thigmonastic and nyctinastic movements. M. pudica is also used to avoid or cure several disorders like cancer, diabetes, hepatitis, obesity, and urinary infections. M. pudica is famous for its anticancer alkaloid, mimosine, along with several valuable secondary metabolites like tannins, steroids, flavonoids, triterpenes, and glycosylflavones. A wide array of pharmacological properties like antioxidant, antibacterial, antifungal, anti-inflammatory, hepatoprotective, antinociceptive, anticonvulsant, antidepressant, antidiarrheal, hypolipidemic activities, diuretic, antiparasitic, antimalarial, and hypoglycemic have been attributed to different parts of M. pudica. Glucuronoxylan polysaccharide extruded from seeds of M. pudica is used for drug release formulations due to its high swelling index. This review covers a thorough examination of functional bioactives as well as pharmacological and phytomedicinal attributes of the plant with the purpose of exploring its pharmaceutical and nutraceutical potentials.
    Matched MeSH terms: Alkaloids
  11. Nejat N, Vadamalai G, Sijam K, Dickinson M
    Plant Dis, 2011 Oct;95(10):1312.
    PMID: 30731679 DOI: 10.1094/PDIS-03-11-0251
    Madagascar periwinkle, Catharanthus roseus (L.) G. Don, is a member of the Apocynaceae plant family that is native to Madagascar and produces dimeric terpenoid indole alkaloids that are used in the treatment of hypertension and cancer. Periwinkle as an indicator plant is highly susceptible to phytoplasmas and spiroplasma infection from different crops, and has been found to be naturally infected with spiroplasmas in Arizona, California, and the Mediterranean countries. In this study, surveys of suspected diseased periwinkles were conducted in various regions of Selangor State, Malaysia. Periwinkles showing rapid decline in the number and size of the flowers, premature abscission of buds and flowers, reduction in leaf size, chlorosis of the leaf tips and margins, general chlorosis, and stunting and dying plants were collected. These symptoms were widespread on periwinkle in this state. Diagnosis of the disease was based on symptomatology, grafting, serology (ELISA), PCR techniques, and cultivation. Tests for transmission by grafting were conducted using symptomatic periwinkle plants. Symptoms were induced on all eight graft-inoculated healthy periwinkles approximately 2 weeks after side grafting. Preliminary examination was performed by ELISA with Spiroplasma citri Saglio polyclonal antibody that was prepared against an Iranian S. citri isolate (H. Rahimian, unpublished data). Leaf extracts of all 24 symptomatic periwinkles gave positive ELISA reactions at OD405 readings ranging from 0.310 to 0.654 to the antibody against S. citri by the indirect ELISA method. Six healthy periwinkle leaves gave OD405 readings around 0.128. Total nucleic acids were extracted from 10 symptomatic and 5 asymptomatic plants (4). PCR using the ScR16F1/ScR16R1 primer pair designed to detect S. citri in carrot and P1/P7 and secA for1/rev3 primer pairs designed for identification of phytoplasmas were used to detect the causal agent (1-3). Amplification failed when the P1/P7 universal phytoplasma primer pair was used for diseased samples. However, the PCR assays resulted in products of 1,833 and 800 bp with ScR16F1/ScR16R1 and secA for1/rev3, respectively. Five of each ScR16F1/ScR16R1 and SecAfor1/SecArev3 products were cloned with the Topo TA cloning kit (Invitrogen, Carlsbad, CA), sequenced, and deposited as GenBank Accession Nos. HM015669 and FJ011099, respectively. Sequences for both genes indicated that S. citri was associated with the disease on periwinkle. ScR16F1/ScR16R1 products cloned from symptomatic periwinkles had 98% sequence identity with S. citri (GenBank Accession No. AM285316), while nucleotide sequences of SecAfor1/SecArev3 products had 88% sequence identity with S. citri GII3-3X (GenBank Accession No. AM285304). S. citri was cultivated from 10 S. citri-infected periwinkles using filtration and SP-4 media. Twenty culture tubes started to change culture medium color from red to yellow 1 month after cultivation. Helical and motile S. citri was observed in the dark-field microscope. To our knowledge, this is the first report on the presence and occurrence of S. citri in Southeast Asia and its association with lethal yellows on periwinkle in Malaysia. References: (1) J. Hodgetts et al. Int. J. Syst. Evol. Microbiol. 58:1826, 2008. (2) I.-M. Lee et al. Phytopathology 85:728, 1995. (3) I.-M. Lee et al. Plant Dis. 90:989, 2006. (4) Y.-P. Zhang et al. J. Virol. Methods. 71:45, 1998.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids
  12. Nwaefulu ON, Al-Shar'i NA, Owolabi JO, Sagineedu SR, Woei LC, Wai LK, et al.
    J Mol Model, 2022 Oct 04;28(11):340.
    PMID: 36194315 DOI: 10.1007/s00894-022-05326-1
    Cancer is imposing a global health burden because of the steady increase in new cases. Moreover, current anticancer therapeutics are associated with many drawbacks, mainly the emergence of resistance and the severe adverse effects. Therefore, there is a continuous need for developing new anticancer agents with novel mechanisms of action and lower side effects. Natural products have been a rich source of anticancer medication. Cycleanine, a natural product, was reported to exert an antiproliferative effect on ovarian cancer cells by causing apoptosis through activation of caspases 3/7 and cleavage of poly (ADP-ribose) polymerase to form poly (ADP-ribose) polymerase-1 (PARP1). It is well-established that PARP1 is associated with carcinogenesis, and different PARP1 inhibitors are approved as anticancer drugs. In this study, the cytotoxic activity of cycleanine was computationally investigated to determine whether it is a PARP1 inhibitor or a caspase activator. Molecular docking and molecular dynamics (MD) simulations were utilized for this purpose. The results showed that cycleanine has a good binding affinity to PARP1; moreover, MD simulation showed that it forms a stable complex with the enzyme. Consequently, the results showed that cycleanine is a potential inhibitor of the PARP1 enzyme.
    Matched MeSH terms: Alkaloids
  13. Ezzat SM, Ezzat MI, Okba MM, Hassan SM, Alkorashy AI, Karar MM, et al.
    PMID: 31275418 DOI: 10.1155/2019/7543460
    Eurycoma longifolia Jack (Fam.: Simaroubaceae), known as Tongkat Ali (TA), has been known as a symbol of virility and sexual power for men. Metabolic profiling of the aqueous extract of E. longifolia (AEEL) using UPLC-MS/MS in both positive and negative modes allowed the identification of seventeen metabolites. The identified compounds were classified into four groups: quassinoids, alkaloids, triterpenes, and biphenylneolignans. AEEL is considered safe with oral LD50 cut-off >5000 mg/kg. Oral administration of 50, 100, 200, 400, or 800 mg/kg of AEEL for 10 consecutive days to Sprague-Dawley male rats caused significant reductions in mounting, intromission, and ejaculation latencies and increased penile erection index. AEEL increased total body weight and relative weights of seminal vesicles and prostate. Total and free serum testosterone and brain cortical and hippocampal dopamine content was significantly elevated in treated groups with no significant effects on serotonin or noradrenaline content.
    Matched MeSH terms: Alkaloids
  14. Kim YH, Kim KH, Han CS, Park SH, Yang HC, Lee BY, et al.
    J Cosmet Sci, 2008 Sep-Oct;59(5):419-30.
    PMID: 18841306
    Crinum asiaticum Linne var. japonicum has long been used as a rheumatic remedy, as an anti-pyretic and as an anti-ulcer treatment, and for the alleviation of local pain and fever in Korea and Malaysia. In order to investigate the possibility of Crinum asiaticum Linne var. japonicum extract as a cosmetic ingredient, we measured its anti-inflammatory effect by its inhibition of iNOS (inducible nitric oxide synthase) and the release of PGE2, IL-6, and IL-8. We also measured its anti-allergic effect by its inhibition of beta-hexosamidase release. An HPLC experiment after extraction with 95% EtOH at pH 3.5 showed that Crinum asiaticum Linne var. japonicum was mainly composed of lycorine (up to 1%), a well-known immunosuppressor. The content of lycorine varied, depending on the type of plant tissue analyzed and the extraction method. In an anti-inflammatory assay for inhibition of nitric oxide formation on lipopolysaccharide (LPS)-activated mouse macrophage RAW 264.7 cells, the ethanol extract of Crinum asiaticum showed an inhibitory activity of NO production in a dose-dependent manner (IC50 = 58.5 microg/ml). Additional study by RT-PCR demonstrated that the extract of Crinum asiaticum significantly suppressed the expression of the iNOS gene. Moreover, the extract of Crinum asiaticum did not show any cytotoxicity, but did show a cell proliferation effect against LPS (a 10 approximately 60% increase in cell viability). In an assay to determine inhibition of the H2O2-activated release of PGE2, IL-6, and IL-8 in human normal fibroblast cell lines, the release of PGE2 and IL-6 was almost completely inhibited above concentrations of 0.05% and 1%, respectively. Moreover, the release of IL-8 was completely inhibited over the entire range of concentration (>0.0025%). In order to investigate the skin-sensitizing potentials of the extract of Crinum asiaticum, a human clinical test was performed after repeated epicutaneous 48-h applications under an occlusive patch (RIPT). The repeated and single cutaneous applications of Crinum asiaticum Linne var. japonicum extract under the occlusive patch did not provoke any cumulative irritation and sensitization reactions. The result showed that the extract of Crinum asiaticum Linne var. japonicum has a sufficient anti-inflammatory effect. Therefore, Crinum asiaticum Linne var. japonicum extract may be useful for development as an ingredient in cosmetic products.
    Matched MeSH terms: Amaryllidaceae Alkaloids/analysis; Amaryllidaceae Alkaloids/pharmacology
  15. Martins J, Brijesh S
    J Ethnopharmacol, 2019 Oct 07.
    PMID: 31600560 DOI: 10.1016/j.jep.2019.112280
    ETHNOPHARMACOLOGICAL RELEVANCE: Erythrina variegata, commonly referred to as 'tiger's claw' or 'Indian coral tree' and 'Parijata' in Sanskrit, belongs to the Fabaceae family. It is a plant native to the coast of India, China, Malaysia, East Africa, Northern Australia and distributed in tropical and subtropical regions worldwide. In traditional medicine, 'Paribhadra' an Indian preparation, makes use of the leaves and bark of E. variegata to destroy pathogenic parasites and relieve joint pains. E. variegata is known to exhibit anxiolytic and anti-convulsant activities. Folkore medicine also suggests that E. variegata barks act on the central nervous system. However, there is a lack of data demonstrating this. The anti-depressant activity of E. variegata bark has not been reported in literature.

    AIM OF THE STUDY: Our study focuses on previously unreported anti-depressant activity of E. variegata bark ethanolic extract (EBE) and determination of its mechanism of action possibly through regulation of monoamine oxidase activity in mouse brain homogenates.

    MATERIALS AND METHODS: EBE was characterized using standard protocols for phytochemical analysis, followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis. Anti-depressant activity of EBE (50, 100, 200 and 500 mg/kg) was evaluated in Swiss white albino mice using acute and chronic forced swim test (FST) models. Furthermore, the potential use of the extract as an adjunct to selective serotonin reuptake inhibitor (SSRI), escitalopram, was evaluated using the chronic unpredictable mild stress test model wherein inhibitory effects on monoamine oxidase (MAO) A and B were assessed by spectrophotometric-chemical analysis in mouse whole brain homogenates.

    RESULTS: The extract showed significant reduction in immobility time periods in both acute (200 mg/kg) and chronic (100, 200 and 500 mg/kg) FST models. When used as an adjunct with escitalopram (15 mg/kg), the extract (100, 200 and 500 mg/kg) showed significantly greater inhibition of MAO-A and B activities when compared to escitalopram alone (30 mg/kg). Phytochemical analysis of EBE revealed presence of sugars, steroids, glycosides, alkaloids and tannins. LC-MS and GC-MS analysis identified components such as 2-amino-3-methyl-1-butanol, phenylethylamine, eriodictyol, daidzein and pomiferin, N-ethyl arachidonoyl amine, inosine diphosphate, trimipramine, granisetron, 3,4-dihydroxymandelic acid, ethyl ester, tri-TMS and dodecane, previously reported for their anti-depressant activity.

    CONCLUSIONS: The study thus demonstrated potential for use of the E. variegata bark ethanolic extract as an adjunct to currently available SSRI treatment. The study also identified components present in E. variegata bark ethanolic extract that may be responsible for its anti-depressant activity. Furthermore, the study thus confirms the traditional use of E. variegata barks in improving CNS function through its anti-depressant like activity.

    Matched MeSH terms: Alkaloids
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links