Displaying publications 301 - 320 of 2140 in total

Abstract:
Sort:
  1. Lau YS, Zhao L, Zhang C, Li H, Han R
    Life Sci, 2020 Jul 10.
    PMID: 32659370 DOI: 10.1016/j.lfs.2020.118069
    AIM: Up-regulation of inflammasome proteins was reported in dystrophin-deficient muscles. However, it remains to be determined whether inflammasome activation plays a role in the pathogenesis of Duchenne muscular dystrophy. This study was therefore set out to investigate whether genetic disruption of the inflammasome pathway impacts the disease progression in mdx mice.

    MAIN METHODS: Mice deficient in both dystrophin and ASC (encoded by Pycard [PYD And CARD Domain Containing]) were generated. The impact of ASC deficiency on muscular dystrophy of mdx mice were assessed by measurements of serum cytokines, Western blot, real-time PCR and histopathological staining.

    KEY FINDINGS: The pro-inflammatory cytokines such as TNF-α, IL-6, KC/GRO and IL-10 were markedly increased in the sera of 8-week-old mdx mice compared to WT. Western blotting showed that P2X7, caspase-1, ASC and IL-18 were upregulated. Disruption of ASC and dystrophin expression in the mdx/ASC-/- mice was verified by Western blot analysis. Histopathological analysis did not find significant alterations in the muscular dystrophy phenotype in mdx/ASC-/- mice as compared to mdx mice.

    SIGNIFICANCE: Taken together, our results show that disruption of the central adaptor ASC of the inflammasome is insufficient to alleviate muscular dystrophy phenotype in mdx mice.

    Matched MeSH terms: Mice, Inbred mdx; Mice
  2. Tambuwala MM, Kesharwani P, Shukla R, Thompson PD, McCarron PA
    Pathol Res Pract, 2018 Nov;214(11):1909-1911.
    PMID: 30170869 DOI: 10.1016/j.prp.2018.08.020
    Fibrosis is known to be the hallmarks of chronic inflammation of the bowel. Epithelial damage due to inflammation compromises the barrier function of the gastrointestinal tract. This barrier dysfunction leads to further spread of inflammation resulting in a chronic state of inflammation. This chronic inflammation leads to development of fibrosis, which has very limited therapeutic options and usually requires surgical removal of the affected tissue. Our previous work has shown that Caffeic acid phenethyl ester (CAPE) is a naturally occurring anti-inflammatory agent, found in propolis, has been found to be protective in experimental colitis via enhancement of epithelial barrier function. However, the impact of CAPE on resolution of fibrosis in the long-term is unknown. The aim of this follow up study was to investigate the effect of CAPE on colon fibrosis in a chronic model of Dextran sulphate sodium induced colitis in mice. Dextran sulphate sodium (DSS) 2.5% w/v was administered in drinking water to induce colitis in C57/BL6 mice for 5 days on the 6th day DSS was stopped and test group mice were treated with intraperitoneal administration of CAPE (30 mg kg-1 day-1) for a further 7 days. Disease activity index (DAI) score, colon length and tissue histology and level of tissue fibrosis was observed. CAPE-treated mice had significantly lower levels of DAI, tissue inflammation scores and fibrosis as compared with control group. Our results show that CAPE is effective in resolving colon fibrosis in chronic inflammation. Thus, we can conclude CAPE could be a potential therapeutic agent for further clinical investigations for treatment of fibrosis in inflammatory bowel diseases in humans.
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  3. Subramaniam B, Arshad NM, Malagobadan S, Misran M, Nyamathulla S, Mun KS, et al.
    Pharmaceutics, 2021 Mar 24;13(4).
    PMID: 33804975 DOI: 10.3390/pharmaceutics13040439
    1'-acetoxychavicol acetate (ACA) extracted from the rhizomes of Alpinia conchigera Griff (Zingiberaceae) has been shown to deregulate the NF-ĸB signaling pathway and induce apoptosis-mediated cell death in many cancer types. However, ACA is a hydrophobic ester, with poor solubility in an aqueous medium, limited bioavailability, and nonspecific targeting in vivo. To address these problems, ACA was encapsulated in a nanostructured lipid carrier (NLC) anchored with plerixafor octahydrochloride (AMD3100) to promote targeted delivery towards C-X-C chemokine receptor type 4 (CXCR4)-expressing prostate cancer cells. The NLC was prepared using the melt and high sheer homogenization method, and it exhibited ideal physico-chemical properties, successful encapsulation and modification, and sustained rate of drug release. Furthermore, it demonstrated time-based and improved cellular uptake, and improved cytotoxic and anti-metastatic properties on PC-3 cells in vitro. Additionally, the in vivo animal tumor model revealed significant anti-tumor efficacy and reduction in pro-tumorigenic markers in comparison to the placebo, without affecting the weight and physiological states of the nude mice. Overall, ACA-loaded NLC with AMD3100 surface modification was successfully prepared with evidence of substantial anti-cancer efficacy. These results suggest the potential use of AMD3100-modified NLCs as a targeting carrier for cytotoxic drugs towards CXCR4-expressing cancer cells.
    Matched MeSH terms: Mice, Nude; Mice
  4. Jose S, Tan SW, Tong CK, Vidyadaran S
    Cell Biol Int, 2015 Dec;39(12):1355-63.
    PMID: 26194799 DOI: 10.1002/cbin.10516
    Microglia are resident macrophages of the central nervous system (CNS). Apart from playing vital roles as sentinel cells, they are crucial in physiological processes such as synaptic pruning during brain development. CNS disorders require an understanding of the contribution of each cellular compartment to the pathogenesis. Elucidating the role of microglia in disease development and progression in the intricate CNS environment is technically challenging and requires the establishment of reliable, reproducible techniques to isolate and culture microglia. A number of different protocols have been developed for isolation of neonatal microglia and here we compare two widely used methods, namely, mild trypsinization and EasySep® magnetic separation. EasySep® magnetic separation provided higher microglia yield, and flow cytometric evaluation of CD11b and F4/80 markers revealed that EasySep® separation method also produced significantly higher purity compared to mild trypsinization. Microglia isolated using EasySep® separation method were functional, as demonstrated by the generation of nitric oxide, IL-6, TNF-α, and MCP-1 in response to lipopolysaccharide stimulation. In summary, this study has revealed that magnetic separation is superior to mild trypsinization in terms of yield and purity of microglia.
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  5. Abdullah F, Khan Nor-Ashikin MN, Agarwal R, Kamsani YS, Abd Malek M, Bakar NS, et al.
    Asian J Androl, 2021 1 22;23(3):281-287.
    PMID: 33473013 DOI: 10.4103/aja.aja_81_20
    Diabetes mellitus (DM) is known to cause reproductive impairment. In men, it has been linked to altered sperm quality and testicular damage. Oxidative stress (OS) plays a pivotal role in the development of DM complications. Glutathione (GSH) is a part of a nonenzymatic antioxidant defense system that protects lipid, protein, and nucleic acids from oxidative damage. However, the protective effects of exogenous GSH on the male reproductive system have not been comprehensively examined. This study determined the impact of GSH supplementation in ameliorating the adverse effect of type 1 DM on sperm quality and the seminiferous tubules of diabetic C57BL/6NTac mice. GSH at the doses of 15 mg kg-1 and 30 mg kg-1 was given intraperitoneally to mice weekly for 6 consecutive weeks. The mice were then weighed, euthanized, and had their reproductive organs excised. The diabetic (D Group) showed significant impairment of sperm quality and testicular histology compared with the nondiabetic (ND Group). Diameters of the seminiferous lumen in diabetic mice treated with 15 mg kg-1 GSH (DGSH15) were decreased compared with the D Group. Sperm motility was also significantly increased in the DGSH15 Group. Improvement in testicular morphology might be an early indication of the protective roles played by the exogenous GSH in protecting sperm quality from effects of untreated type 1 DM or diabetic complications. Further investigation using different doses and different routes of GSH is necessary to confirm this suggestion.
    Matched MeSH terms: Mice, Inbred C57BL; Mice
  6. Xian TH, Sinniah K, Yean CY, Krishnamoorthy V, Bahari MB, Ravichandran M, et al.
    BMC Immunol, 2020 05 25;21(1):29.
    PMID: 32450807 DOI: 10.1186/s12865-020-00360-1
    BACKGROUND: Cholera, an acute watery diarrhoeal disease caused by Vibrio cholerae serogroup O1 and O139 across the continents. Replacing the existing WHO licensed killed multiple-dose oral cholera vaccines that demand 'cold chain supply' at 2-8 °C with a live, single-dose and cold chain-free vaccine would relieve the significant bottlenecks and cost determinants in cholera vaccination campaigns. In this direction, a prototype cold chain-free live attenuated cholera vaccine formulation (LACV) was developed against the toxigenic wild-type (WT) V. cholerae O139 serogroup. LACV was found stable and retained its viability (5 × 106 CFU/mL), purity and potency at room temperature (25 °C ± 2 °C, and 60% ± 5% relative humidity) for 140 days in contrast to all the existing WHO licensed cold-chain supply (2-8 °C) dependent killed oral cholera vaccines.

    RESULTS: The LACV was evaluated for its colonization potential, reactogenicity, immunogenicity and protective efficacy in animal models after its storage at room temperature for 140 days. In suckling mice colonization assay, the LACV recorded the highest recovery of (7.2 × 107 CFU/mL) compared to those of unformulated VCUSM14P (5.6 × 107 CFU/mL) and the WT O139 strain (3.5 × 107 CFU/mL). The LACV showed no reactogenicity even at an inoculation dose of 104-106 CFU/mL in a rabbit ileal loop model. The rabbits vaccinated with the LACV or unformulated VCUSM14P survived a challenge with WT O139 and showed no signs of diarrhoea or death in the reversible intestinal tie adult rabbit diarrhoea (RITARD) model. Vaccinated rabbits recorded a 275-fold increase in anti-CT IgG and a 15-fold increase in anti-CT IgA antibodies compared to those of rabbits vaccinated with unformulated VCUSM14P. Vibriocidal antibodies were increased by 31-fold with the LACV and 14-fold with unformulated VCUSM14P.

    CONCLUSION: The vaccine formulation mimics a natural infection, is non-reactogenic and highly immunogenic in vivo and protects animals from lethal wild-type V. cholerae O139 challenge. The single dose LACV formulation was found to be stable at room temperature (25 ± 2 °C) for 140 days and it would result in significant cost savings during mass cholera vaccination campaigns.

    Matched MeSH terms: Mice, Inbred BALB C; Mice
  7. Yahya MD, Pinnas JL, Meinke GC, Lung CC
    J Autoimmun, 1996 Feb;9(1):3-9.
    PMID: 8845052
    Previous studies have shown that lipid peroxidative processes may play a role in disease pathogenesis in lupus-prone MRL/lpr mice. Studies were thus performed to determine if an immune response against malondialdehyde (MDA), a highly reactive byproduct of lipid peroxidation, was present in these mice. By using MDA-modified mouse serum albumin (MSA) as antigens in ELISA, we found that these mice produce high levels of MDA-specific antibodies in the complement-fixing IgG2a and IgG2b subclasses. Anti-MDA antibodies were also found in MRL/+ mice but in significantly lower levels. The specificity of these antibodies was verified by inhibition ELISA. MDA may contribute to disease pathogenesis in these mice by altering the immunogenicity of self molecules, eliciting an immune response and forming immune complexes that may deposit in tissues.
    Matched MeSH terms: Mice, Mutant Strains; Mice
  8. Suppian R, Nor NM
    Trop Life Sci Res, 2013 Aug;24(1):9-18.
    PMID: 24575238 MyJurnal
    Heterologous prime-boost immunisation strategies can evoke powerful antibody responses and may be of value in developing an improved malaria vaccine. Herein, we show that an immunisation protocol that primes Balb/c mice with a recombinant Bacille Calmette-Guérin (rBCG) vaccine consisting of a plasmid encoding a synthetic fragment of the ESAT-6 epitope of Mycobacterium tuberculosis, the fragment 2 region II of erythrocyte-binding antigen (F2RIIEBA) and the three repeat sequences of the circumsporozoite protein (NANP)3 of Plasmodium falciparum before subsequently boosting the mice with either two doses of the rBCG clone or with a DNA vaccine expressing the native form of F2RIIEBA generating higher serum anti-F2RIIEBA antibody levels than an immunisation protocol that calls for a homologous prime-boost with two doses of rBCG. These results demonstrate the potential of DNA vaccination in boosting the antibody response to a recombinant vaccine expressing multiple epitopes.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  9. Putra WE, Rifa'i M
    Trop Life Sci Res, 2020 Jul;31(2):175-185.
    PMID: 32922674 DOI: 10.21315/tlsr2020.31.2.9
    Aplastic anemia, life-threatened disease, is a hematologic disorder characterised by bone marrow hypoplasia. Multiple modalities such as bone marrow transplantation and immunosuppression treatment have been proposed to ameliorate this entity, however it remains ineffective. Sambucus, a group of herb plants, possesses a broad spectrum of medicinal properties such as antioxidant, insulin-like activity, anticancer and antiviral. However, the study about its activity toward aplastic anemia incidence is based on limited data. Thus, the research aim of this study was to evaluate the immunomodulatory activities of Sambucus javanica in chloramphenicol-induced anemia aplastic mouse model. In this present study, BALB/c mice were administrated with chloramphenicol (CMP) to induce aplastic anemia then followed by S. javanica extracts treatment. Additionally, cellular and molecular aspects were evaluated by flow cytometry and Hematoxylin-Eosin staining. Further analysis showed that S. javanica extracts could promote the population number of regulatory T-cells and naive cytotoxic T-cells. Moreover, those extract also reduced the inflammation and necrotic incidence in CMP-induced mouse aplastic anemia model. Together, these results suggest that S. javanica has therapeutically effect to aplastic anemia by altering the immune system as an immunomodulatory agent.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  10. Hong YH, Yang C, Betik AC, Lee-Young RS, McConell GK
    Am J Physiol Endocrinol Metab, 2016 05 15;310(10):E838-45.
    PMID: 27006199 DOI: 10.1152/ajpendo.00513.2015
    Nitric oxide influences intramuscular signaling that affects skeletal muscle glucose uptake during exercise. The role of the main NO-producing enzyme isoform activated during skeletal muscle contraction, neuronal nitric oxide synthase-μ (nNOSμ), in modulating glucose uptake has not been investigated in a physiological exercise model. In this study, conscious and unrestrained chronically catheterized nNOSμ(+/+) and nNOSμ(-/-) mice either remained at rest or ran on a treadmill at 17 m/min for 30 min. Both groups of mice demonstrated similar exercise capacity during a maximal exercise test to exhaustion (17.7 ± 0.6 vs. 15.9 ± 0.9 min for nNOSμ(+/+) and nNOSμ(-/-), respectively, P > 0.05). Resting and exercise blood glucose levels were comparable between the genotypes. Very low levels of NOS activity were detected in skeletal muscle from nNOSμ(-/-) mice, and exercise increased NOS activity only in nNOSμ(+/+) mice (4.4 ± 0.3 to 5.2 ± 0.4 pmol·mg(-1)·min(-1), P < 0.05). Exercise significantly increased glucose uptake in gastrocnemius muscle (5- to 7-fold) and, surprisingly, more so in nNOSμ(-/-) than in nNOSμ(+/+) mice (P < 0.05). This is in parallel with a greater increase in AMPK phosphorylation during exercise in nNOSμ(-/-) mice. In conclusion, nNOSμ is not essential for skeletal muscle glucose uptake during exercise, and the higher skeletal muscle glucose uptake during exercise in nNOSμ(-/-) mice may be due to compensatory increases in AMPK activation.
    Matched MeSH terms: Mice, Knockout; Mice
  11. Mat Luwi NE, Kadir R, Mohamud R, A Garcia-Santana ML, Acevedo R, Sarmiento ME, et al.
    Int J Mycobacteriol, 2020 8 31;9(3):261-267.
    PMID: 32862158 DOI: 10.4103/ijmy.ijmy_82_20
    Background: Tuberculosis (TB) is the leading cause of mortality due to infectious diseases. The development of new generation vaccines against TB is of paramount importance for the control of the disease. In previous studies, liposomes obtained from lipids of Mycobacterium smegmatis (LMs) demonstrated their immunogenicity and protective capacity against Mycobacterium tuberculosis in mice. To characterize the immunomodulatory capacity of this experimental vaccine candidate, in the current study, the stimulatory capacity of LMs was determined on bone marrow-derived dendritic cells (BMDCs) from mice.

    Methods: LMs were obtained and incubated with mature BMDCs. The internalization of LMs by BMDCs was studied by confocal microscopy, and the LMs immune-stimulatory capacity was determined by the expression of surface molecules (CD86 and MHCII) and the cytokine production (interleukin [IL]-12, interferon-Υ, tumor necrosis factor-α, and IL-10) 24 h after exposure to LMs.

    Results: The interaction of LMs with BMDCs and its internalization was demonstrated as well as the immune activation of BMDCs, characterized by the increased expression of CD86 and the production of IL-12. The LMs internalization and immune activation of BMDCs were blocked in the presence of cytochalasin, filipin III and chlorpromazine, which demonstrated that internalization of LMs by BMDCs is a key process for the LMs induced immune activation of BMDCs.

    Conclusions: The results obtained support the further evaluation of LMs as a mycobacterial vaccine, adjuvant, and in immunotherapy.

    Matched MeSH terms: Mice, Inbred C57BL; Mice
  12. Ait Abderrahim L, Taïbi K, Abderrahim NA, Alomery AM, Abdellah F, Alhazmi AS, et al.
    Toxicon, 2019 Aug 26;169:38-44.
    PMID: 31465783 DOI: 10.1016/j.toxicon.2019.08.005
    Microcystin Leucine-Arginine (MC-LR) is a toxin produced by the cyanobacteria Microcystis aeruginosa. It is the most encountered and toxic type of cyanotoxins. Oxidative stress was shown to play a role in the pathogenesis of microcystin LR by the induction of intracellular reactive oxygen species (ROS) formation that oxidize and damage cellular macromolecules. In the present study we examined the effect of acute MC-LR dose on the cardiac muscle of BALB/c mice. Afterwards, melatonin and N-acetyl cysteine (NAC) were assayed and evaluated as potential protective and antioxidant agents against damages generated by MC-LR. For this purpose, thirty mice were assigned into six groups of five mice each. The effect of MC-LR was first compared to the control group supplied with distilled water, then compared to the other groups supplied with melatonin and NAC. The experiment lasted 10 days after which animals were euthanized. Biomarkers of toxicity such as alkaline phosphatase activity, lipid peroxidation, protein carbonyl content, reduced glutathione content, serum lactate dehydrogenase and serum sorbitol dehydrogenase were assayed. Results showed that toxin treated mice have experienced significant oxidative damage in their myocardial tissue as revealed by noticeable levels of oxidative stress biomarkers and by the reduction in alkaline phosphatase activity. Whereas, melatonin and NAC treated mice manifested lesser oxidative damages. Our findings suggest a potential therapeutic use of melatonin and N-acetyl cysteine as antioxidant protective agents against oxidative damage induced by MC-LR.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  13. Fazalul Rahiman SS, Basir R, Talib H, Tie TH, Chuah YK, Jabbarzare M, et al.
    Trop Biomed, 2013 Dec;30(4):663-80.
    PMID: 24522137 MyJurnal
    Interleukin-27 (IL-27) has a pleiotropic role either as a pro-inflammatory or anti-inflammatory cytokine in inflammatory related diseases. The role and involvement of IL-27 during malaria was investigated and the effects of modulating its release on the production of major inflammatory cytokines and the histopathological consequences in major affected organs during the infection were evaluated. Results showed that IL-27 concentration was significantly elevated throughout the infection but no positive correlation with the parasitaemia development observed. Augmentation of IL-27 significantly elevated the release of anti-inflammatory cytokine, IL-10 whereas antagonising and neutralising IL-27 produced the opposite. A significant elevation of pro-inflammatory cytokines (IFN-γ and IL-6) was also observed, both during augmentation and inhibition of IL-27. Thus, it is suggested that IL-27 exerts an anti-inflammatory activity in the Th1 type response by signalling the production of IL-10 during malaria. Histopathological examination showed sequestration of PRBC in the microvasculature of major organs in malarial mice. Other significant histopathological changes include hyperplasia and hypertrophy of the Kupffer cells in the liver, hyaline membrane formation in lung tissue, enlargement of the white and red pulp followed by the disappearance of germinal centre of the spleen, and tubular vacuolation of the kidney tissues. In conclusion, it is suggested that IL-27 may possibly acts as an anti-inflammatory cytokine during the infection. Modulation of its release produced a positive impact on inflammatory cytokine production during the infection, suggesting its potential in malaria immunotherapy, in which the host may benefit from its inhibition.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  14. El Saftawy EA, Shash RY, Aboulhoda BE, Arsanyos SF, Albadawi EA, Abou-Fandoud SM, et al.
    Trop Biomed, 2021 Jun 01;38(2):53-62.
    PMID: 33973573 DOI: 10.47665/tb.38.2.037
    BACKGROUND: toxoplasmosis is a cosmopolitan protozoan disease with a wide range of neuropathology. Recent studies identified its potential association with several mental disorders e.g. schizophrenia dependable on apoptosis in their pathogenesis. We investigated value of toxoplasmosis to induce apoptosis of the neuronal cells.

    METHODS: per-orally infected C57BL/6 mice with 15-20 cysts of the avirulent T. gondii Beverly strain at 9-11 weeks of age were examined 12 weeks later during parasite establishment. Distributions of the parasite's cysts and the histopathological lesions in the brains were analyzed using Image J software. Relative expression of TNF-α and iNOS of cell-mediated immunity (CMI), Bax (pro-apoptosis) and Bcl-2 (anti-apoptosis) were all assessed using immunohistochemistry.

    RESULTS: higher parasite burden was seen in the forebrain with p value <= 0.05. Dramatically increased TNF-α, iNOS, and Bax expressions with Bax/Bcl-2 ratio 2.42:0.52 were reported (p value <= 0.05). The significant correlation between Bax data and different CMI biomarkers including TNF-α and i-NOS was evaluated. Interestingly, no significant correlation was seen between TNF-α, iNOS, Bax and Bcl-2 expressions and location of the parasite. However, Bax/Bcl-2 ratio was statistically correlated with CMI biomarkers and whole sample mean parasite burden, p value <= 0.05.

    CONCLUSION: Chronic toxoplasmosis exhibits an immense pro-apoptotic signal on the cerebral tissues of experimental mice.

    Matched MeSH terms: Mice, Inbred C57BL; Mice
  15. Karthivashan G, Kura AU, Arulselvan P, Md Isa N, Fakurazi S
    PeerJ, 2016;4:e2127.
    PMID: 27441110 DOI: 10.7717/peerj.2127
    N-Acetyl-p-Aminophenol (APAP), also known as acetaminophen, is the most commonly used over-the counter analgesic and antipyretic medication. However, its overdose leads to both liver and kidney damage. APAP-induced toxicity is considered as one of the primary causes of acute liver failure; numerous scientific reports have focused majorly on APAP hepatotoxicity. Alternatively, not many works approach APAP nephrotoxicity focusing on both its mechanisms of action and therapeutic exploration. Moringa oleifera (MO) is pervasive in nature, is reported to possess a surplus amount of nutrients, and is enriched with several bioactive candidates including trace elements that act as curatives for various clinical conditions. In this study, we evaluated the nephro-protective potential of MO leaf extract against APAP nephrotoxicity in male Balb/c mice. A single-dose acute oral toxicity design was implemented in this study. Group 2, 3, 4 and 5 received a toxic dose of APAP (400 mg/kg of bw, i.p) and after an hour, these groups were administered with saline (10 mL/kg), silymarin-positive control (100 mg/kg of bw, i.p), MO leaf extract (100 mg/kg of bw, i.p), and MO leaf extract (200 mg/kg bw, i.p) respectively. Group 1 was administered saline (10 mL/kg) during both the sessions. APAP-treated mice exhibited a significant elevation of serum creatinine, blood urea nitrogen, sodium, potassium and chloride levels. A remarkable depletion of antioxidant enzymes such as SOD, CAT and GSH-Px with elevated MDA levels has been observed in APAP treated kidney tissues. They also exhibited a significant rise in pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and decreased anti-inflammatory (IL-10) cytokine level in the kidney tissues. Disorganized glomerulus and dilated tubules with inflammatory cell infiltration were clearly observed in the histology of APAP treated mice kidneys. All these pathological changes were reversed in a dose-dependent manner after MO leaf extract treatment. Therefore, MO leaf extract has demonstrated some therapeutic effectiveness against APAP-induced nephrotoxicity through enhancement of the endogenous antioxidant system and a modulatory effect on specific inflammatory cytokines in kidney tissues.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  16. Donald, Koh Fook Chen, Joon, Wah Mak, Soo, Shen Ooi, Kwai Hoe Chong, Kok, Fee Mak
    MyJurnal
    Background: A number of Traditional Chinese Medicine (TCM) preparations are being used for the treatment of diabetes mellitus. Some components of these preparations have biochemical effects other than those of lowering blood glucose and indeed have been used for other medical indications in traditional practice. The primary objective of the study was to determine the effect of the oral mixture of Traditional Chinese Medicine for diabetes (TCM-D™ complex) on blood glucose level and the biochemical changes if any, on the liver (ALT, AST, gamma-GT, albumin, globulin) and renal (blood creatinine, urea) functions in normal mice. The oral mixture is an aqueous extract of four wellknown traditional Chinese medicinal herbs and consists of Trichosanthes kirilowii Maxim., Paeonia lactiflora Pall., Glycyrrhiza uranlensis Fisch., and Panax ginseng (red) CA Meyer in the proportion of 36%, 28%, 18%, and 18% respectively of the dry weight. These herbs have
    been shown to have blood glucose lowering activity and have been used for other traditional medicinal purposes.The safety of the combination was evaluated in the present study. Methods: Experimental Balb/c mice were treated orally via gastric tube with the extract at daily doses equivalent to 1 and 10 times the recommended human dose for 8 weeks. Blood glucose and other biochemical profiles were monitored at pre-treatment and monthly posttreatment until killed. Results: When compared to pre-treatment levels, the blood glucose levels were significantly lower in treated animals compared to those in the control group. At the recommended TCM-D™ dose the levels in treated animals were significantly lower than that of control animals and at pre-treatment. When compared with pre-treatment, the glucose levels were lowest at Week 8 of treatment, the mean levels being 111.23%, 83.32% and 70.33% in control, and in animals given 1 x and 10 x the recommended TCM-D™ dosage respectively. The blood glucose lowering effect was also associated with a significant weight loss in treated animals. There were transient increases in AST and ALT levels but these reverted to normal at Week 8 of treatment. The levels of bilirubin, g-GT, albumin, creatinine and blood urea were also not significantly different at Week 8 from pre-treatment levels in all groups. Conclusion: Even at 10 times the dosage recommended for humans, TCM-D™ did not affect the liver and renal functions of treated animals. Treated and control animals remained healthy and normal throughout the period of observation.
    Matched MeSH terms: Mice, Inbred BALB C; Mice
  17. Tan KY, Tan NH, Tan CH
    Sci Rep, 2018 06 04;8(1):8545.
    PMID: 29867131 DOI: 10.1038/s41598-018-25955-y
    The eastern Russell's viper (Daboia siamensis) causes primarily hemotoxic envenomation. Applying shotgun proteomic approach, the present study unveiled the protein complexity and geographical variation of eastern D. siamensis venoms originated from Guangxi and Taiwan. The snake venoms from the two geographical locales shared comparable expression of major proteins notwithstanding variability in their toxin proteoforms. More than 90% of total venom proteins belong to the toxin families of Kunitz-type serine protease inhibitor, phospholipase A2, C-type lectin/lectin-like protein, serine protease and metalloproteinase. Daboia siamensis Monovalent Antivenom produced in Taiwan (DsMAV-Taiwan) was immunoreactive toward the Guangxi D. siamensis venom, and effectively neutralized the venom lethality at a potency of 1.41 mg venom per ml antivenom. This was corroborated by the antivenom effective neutralization against the venom procoagulant (ED = 0.044 ± 0.002 µl, 2.03 ± 0.12 mg/ml) and hemorrhagic (ED50 = 0.871 ± 0.159 µl, 7.85 ± 3.70 mg/ml) effects. The hetero-specific Chinese pit viper antivenoms i.e. Deinagkistrodon acutus Monovalent Antivenom and Gloydius brevicaudus Monovalent Antivenom showed negligible immunoreactivity and poor neutralization against the Guangxi D. siamensis venom. The findings suggest the need for improving treatment of D. siamensis envenomation in the region through the production and the use of appropriate antivenom.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  18. Mohd Fazirul, M., Sharaniza, A.R., Norhazlin, J.M.Y., Wan Hafizah, W.J., Razif, D., Froemming, G.R.A., et al.
    MyJurnal
    Cryopreservation by vitrification has been widely used in Assisted Reproductive Technology (ART) to preserve embryos for an extended period of time. However, the effect of vitrification on development of the embryos is lacking. Therefore, understanding on vitrification effects on embryonic proteins, especially those involved in preimplantation development is crucial to provide high quality embryos for further usage. In this study, XIAP and S6K1 protein expressions following vitrification was investigated, since they have been implicated in diverse cellular processes including cell growth, migration, proliferation, differentiation, survival and development of preimplantation embryos via the PI3K pathway. Embryos were obtained from superovulated female ICR mice which were mated with fertile males. The embryos were harvested at the 2-cell stage and cultured until blastocyst stage. Blastocysts were then vitrified in ESF40 cryoprotectant. Western blot was carried out to determine the expression of XIAP and S6K1 proteins. The results showed the expression of XIAP and S6K1 significantly decreased in vitrified blastocyst compared to the control. This indicates that blastocyst vitrification may impact developmental competence through the activation of apoptotic pathways.
    Matched MeSH terms: Mice, Inbred ICR; Mice
  19. Singh A, Patel P, Patel VK, Jain DK, Veerasamy R, Sharma PC, et al.
    Curr Cancer Drug Targets, 2017;17(5):456-466.
    PMID: 28067178 DOI: 10.2174/1568009617666170109150134
    BACKGROUND: Colorectal cancer is a devastating disease with a dismal prognosis which is heavily hampered by delayed diagnosis. Surgical resection, radiation therapy and chemotherapy are the curative options. Due to few therapeutic treatments available i.e., mono and combination therapy and development of resistance towards drug response, novel and efficacious therapy are urgently needed.

    OBJECTIVE: In this study, we have studied the potential of histone deacetylase inhibitors in colorectal cancer.

    RESULTS: Histone deacetylase inhibitors (HDACIs) are an emerging class of therapeutic agents having potential anticancer activity with minimal toxicity for different types of malignancies in preclinical studies. HDACIs have proven less effective in monotherapy thus the combination of HDACIs with other anticancer agents are being assessed for the treatment of colorectal cancer.

    CONCLUSION: The molecular mechanism emphasizing the anticancer effect of HDACIs in colorectal cancer was illustrated and a recapitulation was carried out on the recent advances in the rationale behind combination therapies currently underway in clinical evaluations.

    Matched MeSH terms: Mice, Nude; Mice
  20. Dua K, Madan JR, Chellappan DK, Gupta G
    Panminerva Med, 2018 09;60(3):135-136.
    PMID: 30176702 DOI: 10.23736/S0031-0808.18.03442-0
    Matched MeSH terms: Mice, Inbred BALB C; Mice
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links