METHODS: Literature was searched in multiple databases including PubMed, Web of Science, EMBASE (Ovid SP), Airiti Library, Medline Complete, and ProQuest up to July 2015. Allelic frequency for TCF7L2 rs7903146 polymorphism in GDM and control subjects was extracted and statistical analysis was performed using Comprehensive Meta-Analysis (CMA) 2.0 statistical software. The association between TCF7L2 rs7903146 polymorphism and GDM risk was assessed by pooled odd ratios (ORs) using five gene models (dominant, recessive, homozygote, heterozygote, and allele). Stratified analysis based on race/ethnicity was also conducted. The between-study heterogeneity and contribution of each single study to the final result was tested by Cochran Q test and sensitivity analyses, respectively. Publication bias was evaluated using Egger's linear regression test.
RESULTS: A total of 16 studies involving 4,853 cases and 10,631 controls were included in this meta-analysis. Significant association between the T-allele of rs7903146 and GDM risk was observed under all genetic models, dominant model (OR = 1.44, 95% CI = 1.19-1.74), recessive model (OR = 1.35, 95% CI = 1.08-1.70), heterozygous model (OR = 1.31, 95% CI = 1.12-1.53), homozygous model (OR = 1.67, 95% CI = 1.31-2.12), and allele model (OR = 1.31, 95% CI = 1.12-1.53). Stratified analysis by race/ethnicity showed a statistically significant association between rs7903146 polymorphism and susceptibility to GDM under homozygous genetic model (TT versus CC) among whites, Hispanics/Latinos and Asians. Sensitivity analysis showed that the overall findings were robust to potentially influential decisions of the 16 studies included. No significant evidence for publication bias was observed in this meta-analysis for overall studies and subgroup studies.
CONCLUSIONS: This meta-analysis showed that the T allele of TCF7L2 rs7903146 polymorphism was associated with susceptibility of GDM in overall population in white, Hispanic/Latino and Asian sub-groups. Asians with homozygous TT allele of rs7903146 polymorphism have highest risk of GDM (OR = 2.08) followed by Hispanics/Latinos (OR = 1.80) and whites (OR = 1.51). The highest and lowest frequency of T allele of rs7903146 was found in Malaysia and South Korea, respectively. Future studies are needed to profile genetic risk for GDM among high risk Asian and Pacific Islander subgroups.
METHODS: This study included 1740 males (1146 Chinese, 327 Malays and 267 Asian Indians) and 1950 females (1329 Chinese, 360 Malays and 261 Asian Indians) with complete data on anthropometric indices, fasting lipids, smoking status, alcohol consumption, exercise frequency and genotype at the APOE locus.
RESULTS: Malays and Asian Indians were more obese compared with the Chinese. Smoking was uncommon in all females but Malay males had significantly higher prevalence of smokers. Malays had the highest LDL-C whilst Indians had the lowest HDL-C, The epsilon 3 allele was the most frequent allele in all three ethnic groups. Malays had the highest frequency of epsilon 4 (0.180 and 0.152) compared with Chinese (0.085 and 0.087) and Indians (0.108 and 0.075) in males and females, respectively. The epsilon 2 allele was the least common in Asian Indians. Total cholesterol (TC) and LDL-C was highest in epsilon 4 carriers and lowest in epsilon 2 carriers. The reverse was seen in HDL-C with the highest levels seen in epsilon 2 subjects. The association between ethnic group and HDL-C differed according to APOE genotype and gender. Asian Indians had the lowest HDL-C for each APOE genotype except in Asian Indian males with epsilon 2, where HDL-C concentrations were intermediate between Chinese and Malays.
CONCLUSION: Ethnic differences in lipid profile could be explained in part by the higher prevalence of epsilon 4 in the Malays. Ethnicity may influence the association between APOE genotypes and HDL-C. APOE genotype showed no correlation with HDL-C in Malay males whereas the association in Asian Indians was particularly marked. Further studies of interactions between genes and environmental factors will contribute to the understanding of differences of coronary risk amongst ethnic groups.
METHODS: The genotypes were assessed on 144 histologically confirmed NAFLD patients and 198 controls using a Sequenom MassARRAY platform.
RESULTS: The GCKR rs1260326 and rs780094 allele T were associated with susceptibility to NAFLD (OR 1.49, 95 % CI 1.09-2.05, p = 0.012; and OR 1.51, 95 % CI 1.09-2.09, p = 0.013, respectively), non-alcoholic steatohepatitis (NASH) (OR 1.55, 95 % CI 1.10-2.17, p = 0.013; and OR 1.56, 95 % CI 1.10-2.20, p = 0.012, respectively) and NASH with significant fibrosis (OR 1.50, 95 % CI 1.01-2.21, p = 0.044; and OR 1.52, 95 % CI 1.03-2.26, p = 0.038, respectively). Following stratification by ethnicity, significant association was seen in Indian patients between the two SNPs and susceptibility to NAFLD (OR 2.64, 95 % CI 1.28-5.43, p = 0.009; and OR 4.35, 95 % CI 1.93-9.81, p < 0.0001, respectively). The joint effect of GCKR with adiponutrin rs738409 indicated greatly increased the risk of NAFLD (OR 4.14, 95 % CI 1.41-12.18, p = 0.010). Histological data showed significant association of GCKR rs1260326 with high steatosis grade (OR 1.76, 95 % CI 1.08-2.85, p = 0.04).
CONCLUSION: This study suggests that risk allele T of the GCKR rs780094 and rs1260326 is associated with predisposition to NAFLD and NASH with significant fibrosis. The GCKR and PNPLA3 genes interact to result in increased susceptibility to NAFLD.