Displaying publications 301 - 320 of 680 in total

Abstract:
Sort:
  1. Abu-Bakar NB, Makahleh A, Saad B
    Talanta, 2014 Mar;120:47-54.
    PMID: 24468341 DOI: 10.1016/j.talanta.2013.11.081
    A fast and simple solvent microextraction technique using salting out-vortex-assisted liquid-liquid microextraction (salting out-VALLME) was developed for the extraction of furfurals (2-furfural (2-F), 3-furfural (3-F), 5-methylfurfural (5-MF) and 5-hydroxymethylfurfural (5-HMF)) and patulin (PAT) in fruit juice samples. The optimum extraction conditions for 5 mL sample were: extraction solvent, 1-hexanol; volume of extractant, 200 µL; vortex time, 45 s; salt addition, 20%. The simultaneous determination of the furfurals and PAT were investigated using high performance liquid chromatography coupled with diode array detector (HPLC-DAD). The separation was performed using ODS Hypersil C18 column (4.6 mm i.d × 250 mm, 5 μm) under gradient elution. The detection wavelengths used for all compounds were 280 nm except for 3-F (210 nm). The furfurals and PAT were successfully separated in less than 9 min. Good linearities (r(2)>0.99) were obtained within the range 1-5000 μg L(-1) for all compounds except for 3-F (10-5000 µg L(-1)) and PAT (0.5-100 μg L(-1)). The limits of detection (0.28-3.2 µg L(-1)) were estimated at S/N ratio of 3. The validated salting out-VALLME-HPLC method was applied for the analysis of furfurals and PAT in fruit juice samples (apple, mango and grape).
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  2. Rahmani A, Selamat J, Soleimany F
    PMID: 21598138 DOI: 10.1080/19440049.2011.576436
    A reversed-phase HPLC optimization strategy is presented for investigating the separation and retention behavior of aflatoxin B1, B2, G1, G2, ochratoxin A and zearalenone, simultaneously. A fractional factorial design (FFD) was used to screen the significance effect of seven independent variables on chromatographic responses. The independent variables used were: (X1) column oven temperature (20-40°C), (X2) flow rate (0.8-1.2 ml/min), (X3) acid concentration in aqueous phase (0-2%), (X4) organic solvent percentage at the beginning (40-50%), and (X5) at the end (50-60%) of the gradient mobile phase, as well as (X6) ratio of methanol/acetonitrile at the beginning (1-4) and (X7) at the end (0-1) of gradient mobile phase. Responses of chromatographic analysis were resolution of mycotoxin peaks and HPLC run time. A central composite design (CCD) using response surface methodology (RSM) was then carried out for optimization of the most significant factors by multiple regression models for response variables. The proposed optimal method using 40°C oven temperature, 1 ml/min flow rate, 0.1% acetic acid concentration in aqueous phase, 41% organic phase (beginning), 60% organic phase (end), 1.92 ratio of methanol to acetonitrile (beginning) and 0.2 ratio (end) for X1-X7, respectively, showed good prediction ability between the experimental data and predictive values throughout the studied parameter space. Finally, the optimized method was validated by measuring the linearity, sensitivity, accuracy and precision parameters, and has been applied successfully to the analysis of spiked cereal samples.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  3. Parthasarathy S, Ramanathan S, Ismail S, Adenan MI, Mansor SM, Murugaiyah V
    Anal Bioanal Chem, 2010 Jul;397(5):2023-30.
    PMID: 20454783 DOI: 10.1007/s00216-010-3707-7
    A new solid phase extraction method for rapid high performance liquid chromatography-UV determination of mitragynine in plasma has been developed. Optimal separation was achieved with an isocratic mobile phase consisting of acetonitrile-ammonium acetate buffer, 50 mM at pH 5.0 (50:50, v/v). The method had limits of detection and quantification of 0.025 and 0.050 microg/mL, respectively. The method was accurate and precise for the quantitative analysis of mitragynine in human and rat plasma with within-day and between-day accuracies between 84.0 and 109.6%, and their precision values were between 1.7 and 16.8%. Additional advantages over known methods are related to the solid phase extraction technique for sample preparation which yields a clean chromatogram, a short total analysis time, requires a smaller amount of plasma samples and has good assay sensitivity for bioanalytical application. The method was successfully applied in pharmacokinetic and stability studies of mitragynine. In the present study, mitragynine was found to be fairly stable during storage and sample preparation. The present study showed for the first time the detailed pharmacokinetic profiles of mitragynine. Following intravenous administration, mitragynine demonstrated a biphasic elimination from plasma. Oral absorption of the drug was slow, prolonged and was incomplete, with a calculated absolute oral bioavailability value of 3.03%. The variations observed in previous pharmacokinetic studies after oral administration of mitragynine could be attributed to its poor bioavailability rather than to the differences in assay method, metabolic saturation or mitragynine dose.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  4. Al Azzam KM, Makahleah A, Saad B, Mansor SM
    J Chromatogr A, 2010 Jun 4;1217(23):3654-9.
    PMID: 20409552 DOI: 10.1016/j.chroma.2010.03.055
    A three-phase hollow fiber liquid-phase microextraction (HF-LPME) coupled either with capillary electrophoresis (CE) or high performance liquid chromatography (HPLC) with UV detection methods was successfully developed for the determination of trace levels of the anti-diabetic drug, rosiglitazone (ROSI) in biological fluids. The analyte was extracted into dihexyl ether that was immobilized in the wall pores of a porous hollow fiber from 10 mL of aqueous sample, pH 9.5 (donor phase), and was back extracted into the acceptor phase that contained 0.1M HCl located in the lumen of the hollow fiber. Parameters affecting the extraction process such as type of extraction solvent, HCl concentration, donor phase pH, extraction time, stirring speed, and salt addition were studied and optimized. Under the optimized conditions (extraction solvent, dihexyl ether; donor phase pH, 9.5; acceptor phase, 0.1M HCl; stirring speed, 600 rpm; extraction time, 30 min; without addition of salt), enrichment factor of 280 was obtained. Good linearity and correlation coefficients of the analyte was obtained over the concentration ranges of 1.0-500 and 5.0-500 ng mL(-1) for the HPLC (r(2)=0.9988) and CE (r(2)=0.9967) methods, respectively. The limits of detection (LOD) and limits of quantitation (LOQ) for the HPLC and CE methods were (0.18, 2.83) and (0.56, 5.00) ng mL(-1), respectively. The percent relative standard deviation (n=6) for the extraction and determination of three concentration levels (10, 250, 500 ng mL(-1)) of ROSI using the HPLC and CE methods were less than 10.9% and 13.2%, respectively. The developed methods are simple, rapid, sensitive and are suitable for the determination of trace amounts of ROSI in biological fluids.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  5. Teh LK, Zahri MK, Zakaria ZA, Ismail R, Salleh MZ
    J Clin Pharm Ther, 2010 Dec;35(6):723-8.
    PMID: 21054465 DOI: 10.1111/j.1365-2710.2009.01146.x
    CYP2C8 is involved in the cytochrome P450 (CYP) epoxygenase pathway. Arachidonic acid metabolites such as epoxyeicosatrienenoic acids and hydroxyeicosatetrenoic acids, produced may have a role in hypertension. We aimed to develop a medium through-put method for screening samples of known and new mutations of CYP2C8 using denaturing high performance liquid chromatography (DHPLC).
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  6. Khayoon WS, Saad B, Salleh B, Ismail NA, Abdul Manaf NH, Abdul Latiff A
    Anal Chim Acta, 2010 Oct 29;679(1-2):91-7.
    PMID: 20951862 DOI: 10.1016/j.aca.2010.09.008
    The development of a reversed phase high performance liquid chromatography fluorescence method for the determination of the mycotoxins fumonisin B(1) and fumonisin B(2) by using silica-based monolithic column is described. The samples were first extracted using acetonitrile:water (50:50, v/v) and purified by using a C(18) solid phase extraction-based clean-up column. Then, pre-column derivatization for the analyte using ortho-phthaldialdehyde in the presence of 2-mercaptoethanol was carried out. The developed method involved optimization of mobile phase composition using methanol and phosphate buffer, injection volume, temperature and flow rate. The liquid chromatographic separation was performed using a reversed phase Chromolith(®) RP-18e column (100 mm × 4.6 mm) at 30 °C and eluted with a mobile phase of a mixture of methanol and phosphate buffer pH 3.35 (78:22, v/v) at a flow rate of 1.0 mL min(-1). The fumonisins separation was achieved in about 4 min, compared to approximately 20 min by using a C(18) particle-packed column. The fluorescence excitation and emission were at 335 nm and 440 nm, respectively. The limits of detections were 0.01-0.04 μg g(-1) fumonisin B(1) and fumonisin B(2), respectively. Good recoveries were found for spiked samples (0.1, 0.5, 1.5 μg g(-1) fumonisins B(1) and B(2)), ranging from 84.0 to 106.0% for fumonisin B(1) and from 81.0 to 103.0% for fumonisin B(2). Fifty-three samples were analyzed including 39 food and feeds and 14 inoculated corn and rice. Results show that 12.8% of the food and feed samples were contaminated with fumonisin B(1) (range, 0.01-0.51 μg g(-1)) and fumonisin B(2) (0.05 μg g(-1)). The total fumonisins in these samples however, do not exceed the legal limits established by the European Union of 0.8 μg g(-1). Of the 14 inoculated samples, 57.1% contained fumonisin B(1) (0.16-41.0 μg g(-1)) and fumonisin B(2) (range, 0.22-50.0 μg g(-1)). Positive confirmation of selected samples was carried out using liquid chromatography-tandem mass spectrometry, using triple quadrupole analyzer and operated in the multiple reaction monitoring mode.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  7. Teoh M, Narayanan P, Moo KS, Radhakrisman S, Pillappan R, Bukhari NI, et al.
    Pak J Pharm Sci, 2010 Jan;23(1):35-41.
    PMID: 20067864
    Imatinib inhibits Bcr-Abl, c-KIT and PDGFR kinases. It is approved for the treatment of chronic myeloid leukemia (CML), gastrointestinal stromal tumors (GIST) and has further therapeutic potential. Male ICR mice were given imatinib PO (50 or 25 mg/kg, 5 doses every 2 h); euthanized 2 h after the last dose administration; plasma, liver, brain, spleen and kidney were collected and imatinib concentration measured by an optimized HPLC method for quantification in tissues. Methanol (1:1 v/v plasma) and pH 4, 40:30:30 (v/v/v) water-methanol-acetonitrile at 5 ml/g (brain) and 10 ml/g (spleen, kidney, liver) ratio was added to the samples, homogenized, sonicated, centrifuged (15,000 rpm, 5 min, 2 degrees C) and the supernatant injected into an Inertsil CN-3 column (4.6 mm x 150 mm, 5 microm) using 64:35:1 (v/v/v) water-methanol-triethylamine (pH 4.8), flow rate 1 ml/min, 25 degrees C. Imatinib eluted at 7.5 min (268 nm). Linearity: 0.1-50 microg/ml; precision, accuracy, inter- and intra-day variability was within 15%. Recovery was above 95% (plasma), 80% (brain) and 90% (kidney, liver, spleen). Imatinib tissue concentrations were 6-8 folds higher than plasma except brain, where the ratio decreased from 0.24 to 0.08 suggesting limited brain penetration, likely due to blood brain barrier efflux transporters. The extensive distribution supports the expansion of therapeutic applications.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  8. Venkatesh G, Ramanathan S, Nair NK, Mansor SM, Sattar MA, Khan MA, et al.
    Biomed Chromatogr, 2007 May;21(5):484-90.
    PMID: 17294505
    A simple and sensitive RP-HPLC-UV method was developed and validated for simultaneous determination of atenolol and propranolol and subsequently applied to investigate the effect of dimethyl sulfoxide in rat in situ intestinal permeability studies. Atenolol (400 microm) and propranolol (100 microm) were perfused in the small intestine of anaesthetized (pentobarbitone sodium 60 mg/kg, i.p.) male Sprague-Dawley rats either in the presence (1, 3 and 5%) or in the absence of dimethyl sulfoxide. There was no significant alteration (p > 0.05) in the permeability of atenolol and propranolol, which indicated there was no effect of various concentrations of dimethyl sulfoxide (1-5%) on the membrane integrity of the rat intestinal tissues. The analytical method was validated on a C(4) column with a mobile phase comprising ammonium acetate buffer (pH 3.5, 0.02 m) and acetonitrile in the ratio of 30:70 (v/v) at a flow rate of 1.0 mL/min. The validated method was found to be accurate and precise and stability studies were carried out at different storage conditions and both analytes were found to be stable. These findings are applicable for determining the absorbability of water-insoluble drugs and new chemical entities for the purpose of classifying them in the biopharmaceutical classification system.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  9. Venkatesh G, Majid MI, Ramanathan S, Mansor SM, Nair NK, Croft SL, et al.
    Biomed Chromatogr, 2008 May;22(5):535-41.
    PMID: 18205140 DOI: 10.1002/bmc.965
    A simple, sensitive and specific reversed-phase high-performance liquid chromatographic method with UV detection at 251 nm was developed for quantitation of buparvaquone (BPQ) in human and rabbit plasma. The method utilizes 250 microL of plasma and sample preparation involves protein precipitation followed by solid-phase extraction. The method was validated on a C18 column with mobile phase consisting of ammonium acetate buffer (0.02 m, pH 3.0) and acetonitrile in the ratio of 18:82 (v/v) at a flow rate of 1.1 mL/min. The calibration curves were linear (correlation coefficient>or=0.998) in the selected range. The method is specific and sensitive with limit of quantitation of 50 ng/mL for BPQ. The validated method was found to be accurate and precise in the working calibration range. Stability studies were carried out at different storage conditions and BPQ was found to be stable. Partial validation studies were carried out using rabbit plasma and intra- and inter-day precision and accuracy were within 7%. This method is simple, reliable and can be routinely used for preclinical pharmacokinetic studies for BPQ.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  10. Harrison LJ, Sia GL, Sim KY, Tan HT, Connolly JD, Lavaud C, et al.
    Phytochemistry, 1995 Apr;38(6):1497-500.
    PMID: 7786481
    A novel derivative of sucrose, beta-(3,6-di-O-feruloyl)-fructofuranosyl-alpha-(2,3,4,6-tetra-O-ac etyl)- glucopyranoside, was isolated from the wood of Bhesa paniculata. Its structure was determined by a combination of 2D 1H-1H and 1H-13C correlation NMR spectroscopy. The known compounds, glycerol 1-9',12'-octadecadienoate, beta-sitosterol, (+/-)-pinoresinol, methyl 3,4-dihydroxybenzoate, 4-hydroxy-3-methoxybenzoic acid, anofinic acid and 2-(1'-methylethenyl)-benzofuran-5-carboxylic acid were also isolated.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  11. Agus BAP, Hussain N, Selamat J
    Food Chem, 2020 Jan 15;303:125398.
    PMID: 31470272 DOI: 10.1016/j.foodchem.2019.125398
    Roasting is an important process in cocoa production which may lead to formation of non-desirable compounds such as polycyclic aromatic hydrocarbons (PAHs). Therefore, PAH4 (sum of four different polycyclic aromatic hydrocarbons; benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in roasted cocoa beans was determined using a modified method (combination of QuEChERS and DLLME), and quantified by HPLC-FLD. The modified method was validated and met the performance criteria required by the EU Regulation (No. 836/2011). Results show a significant (p 
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  12. Ghaemi F, Amiri A
    J Chromatogr A, 2020 Aug 30;1626:461386.
    PMID: 32797858 DOI: 10.1016/j.chroma.2020.461386
    In this study, the microcrystalline cellulose/metal-organic framework 199 hybrid (MCC/MOF-199) was applied as sorbent for the dispersive micro-solid phase-extraction (D-μSPE) of chlorophenols. The D-μSPE method combined with high-performance liquid chromatography- ultraviolet detection (HPLC-UV) was employed to determine of four chlorophenols including 2-chlorophenol (2-CP), 4-chlorophenol (4-CP), 2,3-dichlorophenol (2,3-DCP), and 2,5-dichlorophenol (2,5-DCP) in aqueous. The main parameters of the D-μSPE process that influence the extraction (i.e. the amount of sorbent, elution condition, extraction time, and pH) were investigated and optimized. Based on the outputs, the presence of MCC on the surface of MOF-199 leads to improve the properties of MOF-199 and the MCC/MOF-199 has the highest sorption capacity, durability, and porosity in comparison with MCC and MOF-199. According to the validation study at the optimized conditions, the linearity for the analytes was achieved in the range from 0.1 to 200 ng mL-1 for 2-CP and 4-CP and 0.15 to 200 ng mL-1 for 2,3-DCP and 2,5-DCP with correlation coefficients between 0.9928 and 0.9965. The limits of detection calculated at S/N=3 were in the range of 0.03-0.05 ng mL-1. Besides, the relative standard deviations (RSDs) for three spiking levels (0.2, 10,100 ng mL-1) do not exceed 6.8% and extraction recoveries are between 81.0% and 88.3%. Finally, the D-μSPE-HPLC-UV method was successfully applied to the analysis of CPs in real water samples (mineral, river and wastewater samples) with good recoveries (95.8 to 99.5%) and satisfactory precisions (RSD < 6.8%).
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  13. Abdulhussein AQ, Jamil AKM, Bakar NKA
    Food Chem, 2021 Oct 15;359:129936.
    PMID: 33957328 DOI: 10.1016/j.foodchem.2021.129936
    In this work, new selective and sensitive dual-template molecularly imprinted polymer nanoparticles (MIPs) were synthesized and characterized. Sorbent MIPs were investigated for simultaneous extraction and clean-up of thiamethoxam and thiacloprid from light and dark honey samples. In this study, ultra-high-performance liquid chromatography-tandem mass spectrometry triple-quadrupole (UHPLC-MS/MS) (QQQ) was used to detect and quantify the pesticides. The kinetic model with adsorption kinetics of sorbent was investigated. The optimal adsorption conditions were 80 mg of polymer MIPs, a 30-min extraction time, and a pH of 7. The detection limit (LOD) and the quantification limit (LOQ) varied from 0.045 to 0.070 µg kg-1 and from 0.07 to 0.10 µg kg-1, respectively. The intra-day and inter-day precision (RSD, %) ranged from 1.3 to 2.0% and from 8.2 to 12.0%, respectively. The recovery of thiamethoxam and thiacloprid ranged from 96.8 to 106.5% and 95.3 to 104.4%, respectively, in light and dark honey samples.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  14. Gan SH, Ismail R
    J Chromatogr B Biomed Sci Appl, 2001 Aug 15;759(2):325-35.
    PMID: 11499486
    An HPLC system using solid-phase extraction and HPLC with UV detection has been validated in order to determine tramadol and o-desmethyltramadol (M1) concentrations in human plasma. The method developed was selective and linear for concentrations ranging from 50 to 3,500 ng/ml (tramadol) and 50 to 500 ng/ml (M1) with mean recoveries of 94.36 +/- 12.53% and 93.52 +/- 7.88%, respectively. Limit of quantitation (LOQ) was 50 ng/ml. For tramadol, the intra-day accuracy ranged from 95.48 to 114.64% and the inter-day accuracy, 97.21 to 103.24%. Good precision (0.51 and 18.32% for intra- and inter-day, respectively) was obtained at LOQ. The system has been applied to determine tramadol concentrations in human plasma samples for a pharmacokinetic study.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  15. Xu ZQ, Norris KJ, Weinberg DS, Kardatzke J, Wertz P, Frank P, et al.
    J Chromatogr B Biomed Sci Appl, 2000 Jun 09;742(2):267-75.
    PMID: 10901131
    A HPLC method was validated for quantification of (+)-calanolide A (1), a novel anti-HIV agent, in rat, dog and human plasma. The synthetic intermediate (+/-)-12-oxocalanolide A (2) was found to be a suitable internal standard. Compounds were extracted from plasma using a solid-phase C(18) cartridge and quantified over the assay range of 12.5 to 800 ng/ml. The method was utilized to determine (+)-calanolide A pharmacokinetics in rats, dogs and humans. This is the first report of a validated HPLC assay for determination of (+)-calanolide A concentrations in rat and dog plasma as well as human plasma obtained from clinical trials. There was no evidence of in vivo epimerization of (+)-calanolide A to its inactive epimer (+)-calanolide B (3).
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  16. Hui BY, Raoov M, Zain NNM, Mohamad S, Osman H
    Crit Rev Anal Chem, 2017 Sep 03;47(5):454-467.
    PMID: 28453309 DOI: 10.1080/10408347.2017.1320936
    The growth in driving force and popularity of cyclodextrin (CDs) and ionic liquids (ILs) as promising materials in the field of analytical chemistry has resulted in an exponentially increase of their exploitation and production in analytical chemistry field. CDs belong to the family of cyclic oligosaccharides composing of α-(1,4) linked glucopyranose subunits and possess a cage-like supramolecular structure. This structure enables chemical reactions to proceed between interacting ions, radical or molecules in the absence of covalent bonds. Conversely, ILs are an ionic fluids comprising of only cation and anion often with immeasurable vapor pressure making them as green or designer solvent. The cooperative effect between CD and IL due to their fascinating properties, have nowadays contributed their footprints for a better development in analytical chemistry nowadays. This comprehensive review serves to give an overview on some of the recent studies and provides an analytical trend for the application of CDs with the combination of ILs that possess beneficial and remarkable effects in analytical chemistry including their use in various sample preparation techniques such as solid phase extraction, magnetic solid phase extraction, cloud point extraction, microextraction, and separation techniques which includes gas chromatography, high-performance liquid chromatography, capillary electrophoresis as well as applications of electrochemical sensors as electrode modifiers with references to recent applications. This review will highlight the nature of interactions and synergic effects between CDs, ILs, and analytes. It is hoped that this review will stimulate further research in analytical chemistry.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  17. Jibril S, Basar N, Sirat HM, Wahab RA, Mahat NA, Nahar L, et al.
    Phytochem Anal, 2019 Jan;30(1):101-109.
    PMID: 30288828 DOI: 10.1002/pca.2795
    INTRODUCTION: Cassia singueana Del. (Fabaceae) is a rare medicinal plant used in the traditional medicine preparations to treat various ailments. The root of C. singueana is a rich source of anthraquinones that possess anticancer, antibacterial and antifungal properties.

    OBJECTIVE: The objective of this study was to develop an ultrasound-assisted extraction (UAE) method for achieving a high extraction yield of anthraquinones using the response surface methodology (RSM), Box-Behnken design (BBD), and a recycling preparative high-performance liquid chromatography (HPLC) protocol for isolation of anthraquinones from C. singueana.

    METHODOLOGY: Optimisation of UAE was performed using the Box-Behnken experimental design. Recycling preparative HPLC was employed to isolate anthraquinones from the root extract of C. singueana.

    RESULTS: The BBD was well-described by a quadratic polynomial model (R2  = 0.9751). The predicted optimal UAE conditions for a high extraction yield were obtained at: extraction time 25.00 min, temperature 50°C and solvent-sample ratio of 10 mL/g. Under the predicted conditions, the experimental value (1.65 ± 0.07%) closely agreed to the predicted yield (1.64%). The obtained crude extract of C. singueana root was subsequently purified to afford eight anthraquinones.

    CONCLUSION: The extraction protocol described here is suitable for large-scale extraction of anthraquinones from plant extracts.

    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  18. Saleem H, Zengin G, Ahmad I, Lee JTB, Htar TT, Mahomoodally FM, et al.
    J Pharm Biomed Anal, 2019 Jun 05;170:132-138.
    PMID: 30921647 DOI: 10.1016/j.jpba.2019.03.027
    The current research work was conducted in order to probe into the biochemical and toxicological characterisation of methanol and dichloromethane (DCM) extracts of Bougainvillea glabra (Choisy.) aerial parts. Biological fingerprints were assessed for in vitro antioxidant, key enzyme inhibitory and cytotoxicity potential. Total bioactive contents were determined spectrophotometrically and the secondary metabolite components of methanol extract was assessed by UHPLC mass spectrometric analysis. The antioxidant capabilities were evaluated via six different in vitro antioxidant assays namely DPPH, ABTS (free radical scavenging), FRAP, CUPRAC (reducing antioxidant power), phosphomolybdenum (total antioxidant capacity) and ferrous chelating activity. Inhibition potential against key enzymes urease, α-glucosidase and cholinesterases were also determined. Methanol extract exhibited higher phenolic (24.01 mg GAE/g extract) as well as flavonoid (41.51 mg QE/g extract) contents. Phytochemical profiling of methanol extract identified a total of twenty secondary metabolites and the major compounds belonged to flavonoids, phenolics and alkaloid derivatives. The findings of antioxidant assays revealed the methanol extract to exhibit stronger antioxidant (except phosphomolybdenum) activities. Similarly, the methanol extract showed highest butyrylcholinesterase and urease inhibition. The DCM extract was most active for phosphomolybdenum and α-glucosidase inhibition assays. Moreover, both extracts exhibited significant cytotoxic potential against five (MCF-7, MDA-MB-231, CaSki, DU-145, and SW-480) human carcinoma cell lines with half maximal inhibitory concentration values of 22.09 to 257.2 μg/mL. Results from the present study highlighted the potential of B. glabra aerial extracts to be further explored in an endeavour to discover novel phytotherapeutics as well as functional ingredients.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
  19. Tan S, Yuen KH, Chan KL
    Planta Med, 2002 Apr;68(4):355-8.
    PMID: 11988862 DOI: 10.1055/s-2002-26751
    A new and simple HPLC method using fluorescence detection was developed to determine 9-methoxycanthin-6-one, an active compound of Eurycoma longifolia Jack in rat and human plasma. The method entailed direct injection of plasma sample after deproteinization using acetonitrile. The mobile phase comprised acetonitrile and distilled water (55 : 45, v/v). Analysis was run at a flow rate of 1.0 ml/min with the detector operating at an excitation wavelength of 371 nm and emission wavelength of 504 nm. The method was specific and sensitive with a detection limit of 0.6 ng/ml and a quantification limit of approximately 1.6 ng/ml. The method was applied in a pilot pharmacokinetic/bioavailability study of the compound in rats. Less than 1 % of the compound was found to be absorbed orally.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods*
  20. Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Makpol S, Damanhuri HA, et al.
    Biochem Biophys Res Commun, 2017 11 25;493(3):1356-1363.
    PMID: 28970069 DOI: 10.1016/j.bbrc.2017.09.164
    We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.
    Matched MeSH terms: Chromatography, High Pressure Liquid/methods
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links