Displaying publications 301 - 320 of 344 in total

Abstract:
Sort:
  1. Kadivar A, Kamalidehghan B, Akbari Javar H, Karimi B, Sedghi R, Noordin MI
    Drug Des Devel Ther, 2017;11:469-481.
    PMID: 28260860 DOI: 10.2147/DDDT.S124102
    Recent cancer molecular therapies are targeting main functional molecules to control applicable process of cancer cells. Attractive targets are established by receptor tyrosine kinases, such as platelet-derived growth factor receptors (PDGFRs) and c-Kit as mostly irregular signaling, which is due to either over expression or mutation that is associated with tumorigenesis and cell proliferation. Imatinib mesylate is a selective inhibitor of receptor tyrosine kinase, including PDGFR-β and c-Kit. In this research, we studied how imatinib mesylate would exert effect on MCF7 and T-47D breast cancer and MCF 10A epithelial cell lines, the gene and protein expression of PDGFR-β, c-Kit and their relevant ligands platelet-derived growth factor (PDGF)-BB and stem cell factor (SCF). The MTS assay was conducted in therapeutic relevant concentration of 2-10 µM for 96, 120 and 144 h treatment. In addition, apoptosis induction and cytostatic activity of imatinib mesylate were investigated with the terminal deoxynucleotidyl transferase dUTP nick end labeling TUNEL and cell cycle assays, respectively, in a time-dependent manner. Comparative real-time PCR and Western blot analysis were conducted to evaluate the expression and regulation of imatinib target genes and proteins. Our finding revealed that imatinib mesylate antiproliferation effect, apoptosis induction and cytostatic activity were significantly higher in breast cancer cell lines compared to MCF 10A. This effect might be due to the expression of PDGFR-β, PDGF-BB, c-Kit and SCF, which was expressed by all examined cell lines, except the T-47D cell line which was not expressed c-Kit. However, examined gene and proteins expressed more in cancer cell lines. Therefore, imatinib mesylate was more effective on them. It is concluded that imatinib has at least two potential targets in both examined breast cancer cell lines and can be a promising drug for targeted therapy to treat breast cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit/genetics*
  2. Harikrishnan H, Jantan I, Haque MA, Kumolosasi E
    Phytother Res, 2018 Dec;32(12):2510-2519.
    PMID: 30238535 DOI: 10.1002/ptr.6190
    Phyllanthin, a lignan from Phyllanthus species, has been reported to possess potent immunosuppressive properties on immune cells and on adaptive and innate immune responses in animal models. Herein, we investigated the inhibitory effects of phyllanthin isolated from Phyllanthus amarus on nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and PI3K-Akt signal transducing pathways in LPS-activated U937 cells. The lipopolysaccharide-stimulated excess production of prostaglandin was significantly suppressed by phyllanthin via the mechanisms linked to the modulatory effects of cyclooxygenase 2 protein and gene expression. Phyllanthin also significantly inhibited the release and mRNA expression of proinflammatory cytokines (interleukin-1 beta and tumor necrosis factor-alpha). Phyllanthin also significantly downregulated the phosphorylation of IκBα, NF-κB (p65), and IKKα/β and suppressed the activation of JNK, ERK, p38MAPK, and Akt in a concentration-dependent manner. Additionally, phyllanthin downregulated the expression of upstream signaling molecules including MyD88 and toll-like receptor 4 that are essential for the activation of NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Based on these observations, phyllanthin may exert their suppressive effects on inflammatory process by mediating the release of inflammatory signaling molecules via the NF-κB, MAPKs, and PI3K-Akt signal transducing pathways. Thus, phyllanthin holds a great promise as a potential anti-inflammatory agent to treat various inflammatory diseases.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  3. Ng WH, Umar Fuaad MZ, Azmi SM, Leong YY, Yong YK, Ng AMH, et al.
    Cell Tissue Res, 2019 Feb;375(2):383-396.
    PMID: 30232595 DOI: 10.1007/s00441-018-2918-7
    Mesenchymal stem cells (MSCs) are known to secrete cardioprotective paracrine factors that can potentially activate endogenous cardiac c-kit cells (CCs). This study aims to optimise MSC growth conditions and medium formulation for generating the conditioned medium (CdM) to facilitate CC growth and expansion in vitro. The quality of MSC-CdM after optimisation of seeding density during MSC stabilisation and medium formulation used during MSC stimulation including glucose, ascorbic acid, serum and oxygen levels and the effects of treatment concentration and repeated CdM harvesting were assessed based on CC viability in vitro under growth factor- and serum-deprived condition. Our data showed that functional CdM can be produced from MSCs with a density of 20,000 cells/cm2, which were stimulated using high glucose (25 mM), ascorbic acid supplemented, serum-free medium under normoxic condition. The generated CdM, when applied to growth factor- and serum-deprived medium at 1:1 ratio, improved CC viability, migration and proliferation in vitro. Such an effect could further be augmented by generating CdM concentrates without compromising CC gene and protein expressions, while retaining its capability to undergo differentiation to form endothelial, smooth muscle and cardiomyocytes. Nevertheless, CdM could not be repeatedly harvested from the same MSC culture, as the protein content and its effect on CC viability deteriorated after the first harvest. In conclusion, this study provides a proof-of-concept strategy to standardise the production of CdM from MSCs based on rapid, stepwise assessment of CC viability, thus enabling production of CdM favourable to CC growth for in vitro or clinical applications.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit/metabolism*
  4. Zhang Y, Lee S, Xu W
    Biochem Biophys Res Commun, 2020 04 16;524(4):1018-1024.
    PMID: 32063363 DOI: 10.1016/j.bbrc.2020.02.021
    Pten deletion in the hematopoietic stem cells (HSC) causes a myeloproliferative disorder, which may subsequently develop into a T-cell acute lymphoblastic leukemia (T-ALL). β-catenin expression was dramatically increased in the c-KitmidCD3+Lin- leukemia stem cells (LSC) and was critical for T-ALL development. Therefore, the inactivation of β-catenin in LSC may have a potential to eliminate the LSC. In this study, we investigated the mechanism of enhancement of the β-catenin expression and subsequently used a drug to inactivate β-catenin expression in T-ALL. Western blot (WB) analysis revealed an increased level of β-catenin in the leukemic cells, but not in the pre-leukemic cells. Furthermore, the WB analysis of the thymic cells from different stages of leukemia development showed that increased expression of β-catenin was not via the pS9-GSK3β signaling, but was dependent on the pT308-Akt activation. Miltefosine (Hexadecylphosphocholine) is the first oral anti-Leishmania drug, which is a phospholipid agent and has been shown to inhibit the PI3K/Akt activity. Treatment of the PtenΔ/Δ leukemic mice with Miltefosine for different durations demonstrated that the pT308-Akt and the β-catenin expressions were inhibited in the leukemia blast cells. Miltefosine treatment also suppressed the TGFβ1/Smad3 signaling pathway. Analysis of TGFβ1 in the sorted subpopulations of the blast cells showed that TGFβ1 was secreted by the CD3+CD4- subpopulation and may exert effects on the subpopulations of both CD3+CD4+ and CD3+CD4- leukemia blast cells. When a TGFβR1 inhibitor, SB431542 was injected into the PtenΔ/Δ leukemic mice, the Smad3 and β-catenin expressions were down-regulated. On the basis of the results, we conclude that Miltefosine can suppress leukemia by degrading β-catenin through repression of the pT308-Akt and TGFβ1/Smad3 signaling pathways. This study demonstrates a possibility to inhibit Pten loss-associated leukemia genesis via targeting Akt and Smad3.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  5. Syafruddin SE, Rodrigues P, Vojtasova E, Patel SA, Zaini MN, Burge J, et al.
    Nat Commun, 2019 03 11;10(1):1152.
    PMID: 30858363 DOI: 10.1038/s41467-019-09116-x
    Transcriptional networks are critical for the establishment of tissue-specific cellular states in health and disease, including cancer. Yet, the transcriptional circuits that control carcinogenesis remain poorly understood. Here we report that Kruppel like factor 6 (KLF6), a transcription factor of the zinc finger family, regulates lipid homeostasis in clear cell renal cell carcinoma (ccRCC). We show that KLF6 supports the expression of lipid metabolism genes and promotes the expression of PDGFB, which activates mTOR signalling and the downstream lipid metabolism regulators SREBF1 and SREBF2. KLF6 expression is driven by a robust super enhancer that integrates signals from multiple pathways, including the ccRCC-initiating VHL-HIF2A pathway. These results suggest an underlying mechanism for high mTOR activity in ccRCC cells. More generally, the link between super enhancer-driven transcriptional networks and essential metabolic pathways may provide clues to the mechanisms that maintain the stability of cell identity-defining transcriptional programmes in cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-sis/genetics
  6. Munkongdee T, Tongsima S, Ngamphiw C, Wangkumhang P, Peerapittayamongkol C, Hashim HB, et al.
    Sci Rep, 2021 05 14;11(1):10352.
    PMID: 33990643 DOI: 10.1038/s41598-021-89641-2
    β-Thalassemia/HbE disease has a wide spectrum of clinical phenotypes ranging from asymptomatic to dependent on regular blood transfusions. Ability to predict disease severity is helpful for clinical management and treatment decision making. A thalassemia severity score has been developed from Mediterranean β-thalassemia patients. However, different ethnic groups may have different allele frequency and linkage disequilibrium structures. Here, Thai β0-thalassemia/HbE disease genome-wild association studies (GWAS) data of 487 patients were analyzed by SNP interaction prioritization algorithm, interacting Loci (iLoci), to find predictive SNPs for disease severity. Three SNPs from two SNP interaction pairs associated with disease severity were identifies. The three-SNP disease severity risk score composed of rs766432 in BCL11A, rs9399137 in HBS1L-MYB and rs72872548 in HBE1 showed more than 85% specificity and 75% accuracy. The three-SNP predictive score was then validated in two independent cohorts of Thai and Malaysian β0-thalassemia/HbE patients with comparable specificity and accuracy. The SNP risk score could be used for prediction of clinical severity for Southeast Asia β0-thalassemia/HbE population.
    Matched MeSH terms: Proto-Oncogene Proteins c-myb/genetics
  7. Siar CH, Nakano K, Ng KH, Tomida M, Nagatsuka H, Kawakami T
    Eur J Med Res, 2010 Apr 08;15(4):180-4.
    PMID: 20554499
    BACKGROUND: Squamous odontogenic tumor (SOT) is a rare benign odontogenic epithelial neoplasm. A slow-growing painless expansive swelling is the common presenting symptom. Histopathologically, SOT can be easily misdiagnosed as an acanthomatous ameloblastoma. Although Notch receptors and ligands have been shown to play a role in cell fate decisions in ameloblastomas, the role of these cell signaling molecules in SOT is unknown.

    CASE REPORT: This paper describes a case of SOT affecting the anterior mandible of a 10-year-old Indian female. The patient was treated by local surgical excision and there has been no follow-up clinical record of recurrence 5 years after primary treatment. Histo?pathological examination revealed a solid, locally-infiltrative neoplasm composed of bland-looking squamatoid islands scattered in a mature fibrous connective tissue stroma and the diagnosis was SOT. Immunohistochemical evaluation showed positive reactivity of varying intensity in the neoplastic epithelial cells for Notch1, Notch3, Notch4, and their ligands Jagged1 and Delta1. Expression patterns showed considerable overlap. No immunoreactivity was detected for Notch2 and Jagged2.

    CONCLUSIONS: Present findings suggest that Notch receptors and their ligands play differential roles in the cytodifferentiation of SOT.

    Matched MeSH terms: Proto-Oncogene Proteins/metabolism*
  8. Ooi J, Adamu HA, Imam MU, Ithnin H, Ismail M
    Biomed Pharmacother, 2018 Feb;98:125-133.
    PMID: 29248832 DOI: 10.1016/j.biopha.2017.12.002
    This study aimed to evaluate the effect of ethyl acetate fraction (EAF) isolated from Molineria latifolia rhizome as dietary interventions for type 2 diabetes mellitus (T2DM) and its underlying molecular mechanisms in vivo. Experimental rats were induced by high fat diet feeding coupled with combined exposure to streptozotocin and nicotinamide. Treatment with EAF improved glucose tolerance and lipid profiles, but the insulin secretion was unaltered. Gene expression analyses on insulin/adipocytokine signalling-related genes demonstrated tissue-specific transcriptional responses. In skeletal muscle and liver tissues, Socs1, Tnf and Mapk8 showed consistent transcript regulation. Furthermore, hepatic translational analyses revealed sensitization on proximal insulin signalling, with reduced expression of IRS1 serine phosphorylation, increased IRS1 tyrosine phosphorylation and increased phospho-AKT (Ser473). The present findings suggested that EAF exerted its effect by modulating insulin signalling, potentially via IRS1/AKT activation. The pharmacological attributes of EAF may implicate its potential therapeutic applications for diabetes management.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism*
  9. Kamarudin MN, Mohd Raflee NA, Hussein SS, Lo JY, Supriady H, Abdul Kadir H
    Drug Des Devel Ther, 2014;8:1765-80.
    PMID: 25336920 DOI: 10.2147/DDDT.S67980
    Alpha-lipoic acid, a potent antioxidant with multifarious pharmacological benefits has been reported to be neuroprotective in several neuronal models and used to treat neurological disorders such as Alzheimer's disease. Nonetheless, conclusive mechanisms of alpha-lipoic acid for its protective effects particularly in NG108-15 cells have never been investigated. In this study, the intricate neuroprotective molecular mechanisms by (R)-(+)-alpha-lipoic acid (R-LA) against H2O2-induced cell death in an in vitro model of neurodegeneration were elucidated. Pretreatment with R-LA (2 hours) significantly increased NG108-15 cell viability as compared to H2O2-treated cells and mitigated the induction of apoptosis as evidenced by Hoechst 33342/propidium iodide staining. R-LA (12.5-50 μM) aggrandized the reduced glutathione over glutathione disulfide ratio followed by a reduction in the intracellular reactive oxygen species level and an increase in mitochondrial membrane potential following H2O2 exposure. Moreover, pretreatment with R-LA stimulated the activation of PI3K-Akt through mTORC1 and mTORC2 components (mTOR, rictor and raptor) and production of antiinflammatory cytokine, IL-10 which led to the inactivation of glycogen synthase kinase-3β (GSK-3β) and reduction of both Bax/Bcl2 and Bax/Bcl-xL ratios, accompanied by inhibition of the cleaved caspase-3. Additionally, this observation was preceded by the suppression of NF-κβ p65 translocation and production of proinflammatory cytokines (IL-6 and TNF-α). The current findings accentuate new mechanistic insight of R-LA against apoptogenic and brain inflammatory factors in a neuronal model. These results further advocate the therapeutic potential of R-LA for the treatment of neurodegenerative diseases.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism*
  10. Nagoor NH, Shah Jehan Muttiah N, Lim CS, In LL, Mohamad K, Awang K
    PLoS One, 2011;6(8):e23661.
    PMID: 21858194 DOI: 10.1371/journal.pone.0023661
    The aim of this study was to determine the cytotoxic and apoptotic effects of erythrocarpine E (CEB4), a limonoid extracted from Chisocheton erythrocarpus on human oral squamous cell carcinoma. Based on preliminary dimethyl-2-thiazolyl-2,5-diphenyl-2H-tetrazolium bromide (MTT) assays, CEB4 treated HSC-4 cells demonstrated a cytotoxic effect and inhibited cell proliferation in a time and dose dependent manner with an IC(50) value of 4.0±1.9 µM within 24 h of treatment. CEB4 was also found to have minimal cytotoxic effects on the normal cell line, NHBE with cell viability levels maintained above 80% upon treatment. Annexin V-fluorescein isothiocyanate (FITC), poly-ADP ribose polymerase (PARP) cleavage and DNA fragmentation assay results showed that CEB4 induces apoptosis mediated cell death. Western blotting results demonstrated that the induction of apoptosis by CEB4 appeared to be mediated through regulation of the p53 signalling pathway as there was an increase in p53 phosphorylation levels. CEB4 was also found to up-regulate the pro-apoptotic protein, Bax, while down-regulating the anti-apoptotic protein, Bcl-2, suggesting the involvement of the intrinsic mitochondrial pathway. Reduced levels of initiator procaspase-9 and executioner caspase-3 zymogen were also observed following CEB4 exposure, hence indicating the involvement of cytochrome c mediated apoptosis. These results demonstrate the cytotoxic and apoptotic ability of erythrocarpine E, and suggest its potential development as a cancer chemopreventive agent.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  11. Er JL, Goh PN, Lee CY, Tan YJ, Hii LW, Mai CW, et al.
    Apoptosis, 2018 Jun;23(5-6):343-355.
    PMID: 29740790 DOI: 10.1007/s10495-018-1459-6
    Pancreatic adenocarcinoma (PDAC) is a highly aggressive cancer with a high chance of recurrence, limited treatment options, and poor prognosis. A recent study has classified pancreatic cancers into four molecular subtypes: (1) squamous, (2) immunogenic, (3) pancreatic progenitor and (4) aberrantly differentiated endocrine exocrine. Among all the subtypes, the squamous subtype has the worst prognosis. This study aims to utilize large scale genomic datasets and computational systems biology to identify potential drugs targeting the squamous subtype of PDAC through combination therapy. Using the transcriptomic data available from the International Cancer Genome Consortium, Cancer Cell Line Encyclopedia and Connectivity Map, we identified 26 small molecules that could target the squamous subtype of PDAC. Among them include inhibitors targeting the SRC proto-oncogene (SRC) and the mitogen-activated protein kinase kinase 1/2 (MEK1/2). Further analyses demonstrated that the SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib) synergized gemcitabine sensitivity specifically in the squamous subtype of PDAC cells (SW1990 and BxPC3), but not in the PDAC progenitor cells (AsPC1). Further analysis revealed that the synergistic effects are dependent on SRC or MEK1/2 activities, as overexpression of SRC or MEK1/2 completely abrogated the synergistic effects SRC inhibitors (dasatinib and PP2) and MEK1/2 inhibitor (pimasertib). In contrast, no significant toxicity was observed in the MRC5 human lung fibroblast and ARPE-19 human retinal pigment epithelial cells. Together, our findings suggest that combinations of SRC or MEK inhibitors with gemcitabine possess synergistic effects on the squamous subtype of PDAC cells and warrant further investigation.
  12. Yazid MD, Hung-Chih C
    Cell Commun Signal, 2021 10 27;19(1):105.
    PMID: 34706731 DOI: 10.1186/s12964-021-00785-0
    BACKGROUND: The absence of dystrophin has gave a massive impact on myotube development in Muscular Dystrophy pathogenesis. One of the conserved signaling pathways involved in skeletal muscle differentiation is the PI3K/Akt/mTOR pathway that plays a vital role in autophagy regulation. To further understand and establish targeted therapy in dystrophin-deficient myoblasts, protein expression profiling has been determined which provides information on perturbed autophagy modulation and activation.

    METHODS: In this study, a dystrophin-deficient myoblast cell line established from the skeletal muscle of a dystrophic (mdx) mouse was used as a model. The dfd13 (dystrophin-deficient) and C2C12 (non-dystrophic) myoblasts were cultured in low mitogen conditions for 10 days to induce differentiation. The cells were subjected to total protein extraction prior to Western blotting assay technique. Protein sub-fractionation has been conducted to determine protein localization. The live-cell analysis of autophagy assay was done using a flow cytometer.

    RESULTS: In our culture system, the dfd13 myoblasts did not achieve terminal differentiation. PTEN expression was profoundly increased in dfd13 myoblasts throughout the differentiation day subsequently indicates perturbation of PI3K/Akt/mTOR regulation. In addition, rictor-mTORC2 was also found inactivated in this event. This occurrence has caused FoxO3 misregulation leads to higher activation of autophagy-related genes in dfd13 myoblasts. Autophagosome formation was increased as LC3B-I/II showed accumulation upon differentiation. However, the ratio of LC3B lipidation and autophagic flux were shown decreased which exhibited dystrophic features.

    CONCLUSION: Perturbation of the PTEN-PI3K/Akt pathway triggers excessive autophagosome formation and subsequently reduced autophagic flux within dystrophin-deficient myoblasts where these findings are of importance to understand Duchenne Muscular Dystrophy (DMD) patients. We believe that some manipulation within its regulatory signaling reported in this study could help restore muscle homeostasis and attenuate disease progression. Video Abstract.

    Matched MeSH terms: Proto-Oncogene Proteins c-akt/genetics
  13. Yaiw KC, Ong KC, Chua KB, Bingham J, Wang L, Shamala D, et al.
    J Virol Methods, 2007 Aug;143(2):140-6.
    PMID: 17442409
    Tioman virus is a newly described bat-urine derived paramyxovirus isolated in Tioman Island, Malaysia in 2001. Hitherto, neither human nor animal infection by this virus has been reported. Nonetheless, its close relationship to another paramyxovirus, the Menangle virus which had caused diseases in humans and pigs [Philbey, A.W., Kirkland, P.D., Ross, A.D., Davis, R.J., Gleeson, A.B., Love, R.J., Daniels, P.W., Gould, A.R., Hyatt, A.D., 1998. An apparently new virus (family Paramyxoviridae) infectious for pigs, humans, and fruit bats. Emerg. Infect. Dis. 4, 269-271], raises the possibility that it may be potentially pathogenic. In this study, mice were experimentally infected with Tioman virus by intraperitoneal and intracerebral routes, and the cellular targets and topographical distribution of viral genome and antigens were examined using in situ hybridization and immunohistochemistry, respectively. The possible association between viral infection and apoptosis was also investigated using the TUNEL assay and immunohistochemistry to FasL, Caspase-3, Caspase-8, Caspase-9 and bcl-2. The results showed that Tioman virus inoculated intracerebrally was neurotropic causing plaque-like necrotic areas, and appeared to preferentially replicate in the neocortex and limbic system. Viral infection of inflammatory cells was also demonstrated. TUNEL and Caspase-3 positivity was found in inflammatory cells but not in neurons, while FasL, Caspase-8 and Caspase-9 were consistently negative. This suggests that neuronal infection was associated with necrosis rather than apoptosis. Moreover, the data suggest that there may be an association between viral infection and apoptosis in inflammatory cells, and that it could, at least in part, involve Caspase-independent pathways. Bcl-2 was expressed in some neurons and inflammatory cells indicating its possible role in anti-apoptosis. There was no evidence of central nervous system infection via the intraperitoneal route.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/analysis
  14. Wong HC, Wong CC, Sagineedu SR, Loke SC, Lajis NH, Stanslas J
    Cell Biol Toxicol, 2014 Oct;30(5):269-88.
    PMID: 25070834 DOI: 10.1007/s10565-014-9282-5
    3,19-(3-Chloro-4-fluorobenzylidene)andrographolide (SRJ23), a new semisynthetic derivative of andrographolide (AGP), exhibited selectivity against prostate cancer cells in the US National Cancer Institute (NCI) in vitro anti-cancer screen. Herein, we report the in vitro growth inhibition and mechanisms of cell cycle arrest and apoptosis induced by SRJ23.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  15. Nordin N, Fadaeinasab M, Mohan S, Mohd Hashim N, Othman R, Karimian H, et al.
    PLoS One, 2016;11(5):e0154023.
    PMID: 27136097 DOI: 10.1371/journal.pone.0154023
    Drug resistance presents a challenge in chemotherapy and has attracted research interest worldwide and particular attention has been given to natural compounds to overcome this difficulty. Pulchrin A, a new compound isolated from natural products has demonstrated novel potential for development as a drug. The identification of pulchrin A was conducted using several spectroscopic techniques such as nuclear magnetic resonance, liquid chromatography mass spectrometer, infrared and ultraviolet spectrometry. The cytotoxicity effects on CAOV-3 cells indicates that pulchrin A is more active than cisplatin, which has an IC50 of 22.3 μM. Significant changes in cell morphology were present, such as cell membrane blebbing and formation of apoptotic bodies. The involvement of phosphatidylserine (PS) in apoptosis was confirmed by Annexin V-FITC after a 24 h treatment. Apoptosis was activated through the intrinsic pathway by activation of procaspases 3 and 9 as well as cleaved caspases 3 and 9 and ended at the executioner pathway, with the occurrence of DNA laddering. Apoptosis was further confirmed via gene and protein expression levels, in which Bcl-2 protein was down-regulated and Bax protein was up-regulated. Furthermore, the CAOV-3 cell cycle was disrupted at the G0/G1 phase, leading to apoptosis. Molecular modeling of Bcl-2 proteins demonstrated a high- binding affinity, which inhibited the function of Bcl-2 proteins and led to cell death. Results of the current study can shed light on the development of new therapeutic agents, particularly, human ovarian cancer treatments.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  16. Jalal T, Natto HA, Wahab RA
    PMID: 33653245 DOI: 10.2174/1386207324666210302095557
    In recent biomedical research, the area of cancer and infectious diseases has a leading position in the utilization of medicinal plants as a source of drug discovery. Malaysia has a diversity and a large number of underutilized fruits that are rich in phenolic compounds. Artoarpus altilis consider an underutilized fruit that is rich in phenolic compounds. Methanol extracts of A. altilis have been previously found to contain a high content of antioxidant phytochemicals. The purpose of the study was to evaluate the cytotoxicity and toxicological effect of methanol fruit extracts against MCF-7 cells. To determine the least concentration that might kill or suppress the growth of the cancer cells was in a concentration-dependent manner approach. The variation in the cytotoxic activity among the extracts was indicated by determining the IC50 of each extract against cells at 72 h. The IC50 of the samples was measured using a trypan blue exclusion assay. The methanol extract of the pulp part showed the least inhibition concentration of 15.40±0.91 μg/mL on MCF-7 cells. In the study, the molecular mechanism of methanol extracts-induced apoptosis and cell cycle arrested in human cancer cells were investigated in a time-dependent-manners approach by using flow cytometry. The treated cells were stained with nexin to detect early and late apoptosis and with propidium iodide (PI) for cell cycle arrest associated with the DNA fragmentation, various cell arrests occurred at G1/S, S, and G2/M phases. Lastly, the gene expression analysis by (RT-qPCR) method was carried out by analyzing the expression of the gene of interest for the quantification of mRNA levels. Results after cells treated with IC50 were revealed by upregulating anti-apoptotic genes/downregulated of pro-apoptotic BCL-2 gene expressions were triggered the treated cells into CASPASE-3, intrinsic and extrinsic pathways. These findings suggest that the methanol extracts of three parts of A. altilis fruit have potential anticancer activity against MCF-7 cells mainly the pulp part of the fruit.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  17. Vijakumaran U, Yazid MD, Hj Idrus RB, Abdul Rahman MR, Sulaiman N
    Front Pharmacol, 2021;12:663266.
    PMID: 34093194 DOI: 10.3389/fphar.2021.663266
    Objective: Hydroxytyrosol (HT), a polyphenol of olive plant is well known for its antioxidant, anti-inflammatory and anti-atherogenic properties. The aim of this systematic search is to highlight the scientific evidence evaluating molecular efficiency of HT in halting the progression of intimal hyperplasia (IH), which is a clinical condition arises from endothelial inflammation. Methods: A systematic search was performed through PubMed, Web of Science and Scopus, based on pre-set keywords which are Hydroxytyrosol OR 3,4-dihydroxyphenylethanol, AND Intimal hyperplasia OR Neointimal hyperplasia OR Endothelial OR Smooth muscles. Eighteen in vitro and three in vitro and in vivo studies were selected based on a pre-set inclusion and exclusion criteria. Results: Based on evidence gathered, HT was found to upregulate PI3K/AKT/mTOR pathways and supresses inflammatory factors and mediators such as IL-1β, IL-6, E-selectin, P-selectin, VCAM-1, and ICAM-1 in endothelial vascularization and functioning. Two studies revealed HT disrupted vascular smooth muscle cells (SMC) cell cycle by dephosphorylating ERK1/2 and AKT pathways. Therefore, HT was proven to promote endothelization and inhibit vascular SMCs migration thus hampering IH development. However, none of these studies described the effect of HT collectively in both vascular endothelial cells (EC) and SMCs in IH ex vivo model. Conclusions: Evidence from this concise review provides an insight on HT regulation of molecular pathways in reendothelization and inhibition of VSMCs migration. Henceforth, we propose effect of HT on IH prevention could be further elucidated through in vivo and ex vivo model.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt
  18. Naik, V.R., Hasnan, J.
    MyJurnal
    Introduction: The proto-oncogene c-kit is the cellular homologue of the oncogene v-kit of HZ4 feline sarcoma virus. It is located on chromosome 4 (4q11-12) in the human genome. Interaction between the c-kit receptor and its ligand, stem cell factor, is essential in the development of tissues. C-kit expression has been identified in a number of different neoplasms like seminoma/dysgerminoma, and gastrointestinal stromal tumors (GIST). Recently it has been reported that c-kit is also present in leiomyosarcomas. Tyrosine kinase inhibitors (TKIs) are a promising new therapy in the treatment of cancer. These agents target cellular proteins like kit and its related homologues decreasing cellular proliferation and survival. TKIs may be helpful in treating leiomyosarcomas expressing c-kit. Materials and Methods: In this study a total of 6 cases diagnosed as leiomyosarcomas at Department of Pathology, Universiti Sains Malaysia, Kubang Kerian, Malaysia, were investigated for reactivity for c-kit using immunohistochemical stain. Stain was considered positive if more than 10 percent of the cells showed membrane or cytoplasmic positivity. Results: Two leiomyosarcomas stained faintly with c-kit and in less than 10 percent of the cells. The other 4 cases showed no staining. The control showed good membrane and cytoplasmic positivity. Conclusion: Uterine leiomyosarcomas did not express c-kit. The reason for this could be that the tumors are inherently c-kit negative. More study using larger number of cases is required to validate these findings and further molecular characterization of these mesenchymal tumors is needed to identify the true nature of these sarcomas.
    Matched MeSH terms: Proto-Oncogene Proteins c-kit
  19. Al-Obeed O, Vaali-Mohammed MA, Eldehna WM, Al-Khayal K, Mahmood A, Abdel-Aziz HA, et al.
    Onco Targets Ther, 2018;11:3313-3322.
    PMID: 29892198 DOI: 10.2147/OTT.S148108
    Introduction: Colorectal cancer (CRC) is a major worldwide health problem owing to its high prevalence and mortality rate. Developments in screening, prevention, biomarker, personalized therapies and chemotherapy have improved detection and treatment. However, despite these advances, many patients with advanced metastatic tumors still succumb to the disease. New anticancer agents are needed for treating advanced stage CRC as most of the deaths occur due to cancer metastasis. A recently developed novel sulfonamide derivative 4-((2-(4-(dimethylamino) phenyl)quinazolin-4-yl)amino)benzenesulfonamide (3D) has shown potent antitumor effect; however, the mechanism underlying the antitumor effect remains unknown.

    Materials and methods: 3D-mediated inhibition on cell viability was evaluated by MTT and real-time cell proliferation was measured by xCelligence RTDP instrument. Western blotting was used to measure pro-apoptotic, anti-apoptotic proteins and JAK2-STAT3 phosphorylation. Flow cytometry was used to measure ROS production and apoptosis.

    Results: Our study revealed that 3D treatment significantly reduced the viability of human CRC cells HT-29 and SW620. Furthermore, 3D treatment induced the generation of reactive oxygen species (ROS) in human CRC cells. Confirming our observation, N-acetylcysteine significantly inhibited apoptosis. This is further evidenced by the induction of p53 and Bax; release of cytochrome c; activation of caspase-9, caspase-7 and caspase-3; and cleavage of PARP in 3D-treated cells. This compound was found to have a significant effect on the inhibition of antiapoptotic proteins Bcl2 and BclxL. The results further demonstrate that 3D inhibits JAK2-STAT3 pathway by decreasing the constitutive and IL-6-induced phosphorylation of STAT3. 3D also decreases STAT3 target genes such as cyclin D1 and survivin. Furthermore, a combination study of 3D with doxorubicin (Dox) also showed more potent effects than single treatment of Dox in the inhibition of cell viability.

    Conclusion: Taken together, these findings indicate that 3D induces ROS-mediated apoptosis and inhibits JAK2-STAT3 signaling in CRC.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2
  20. Ashaie MA, Islam RA, Kamaruzman NI, Ibnat N, Tha KK, Chowdhury EH
    Pharmaceutics, 2019 Jul 02;11(7).
    PMID: 31269666 DOI: 10.3390/pharmaceutics11070309
    While several treatment strategies are applied to cure breast cancer, it still remains one of the leading causes of female deaths worldwide. Since chemotherapeutic drugs have severe side effects and are responsible for development of drug resistance in cancer cells, gene therapy is now considered as one of the promising options to address the current treatment limitations. Identification of the over-expressed genes accounting for constitutive activation of certain pathways, and their subsequent knockdown with specific small interfering RNAs (siRNAs), could be a powerful tool in inhibiting proliferation and survival of cancer cells. In this study, we delivered siRNAs against mRNA transcripts of over-regulated cell adhesion molecules such as catenin alpha 1 (CTNNA1), catenin beta 1 (CTNNB1), talin-1 (TLN1), vinculin (VCL), paxillin (PXN), and actinin-1 (ACTN1) in human (MCF-7 and MDA-MB-231) and murine (4T1) cell lines as well as in the murine female Balb/c mice model. In order to overcome the barriers of cell permeability and nuclease-mediated degradation, the pH-sensitive carbonate apatite (CA) nanocarrier was used as a delivery vehicle. While targeting CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 resulted in a reduction of cell viability in MCF-7 and MDA-MB-231 cells, delivery of all these siRNAs via carbonate apatite (CA) nanoparticles successfully reduced the cell viability in 4T1 cells. In 4T1 cells, delivery of CTNNA1, CTNNB1, TLN1, VCL, PXN, and ACTN1 siRNAs with CA caused significant reduction in phosphorylated and total AKT levels. Furthermore, reduced band intensity was observed for phosphorylated and total MAPK upon transfection of 4T1 cells with CTNNA1, CTNNB1, and VCL siRNAs. Intravenous delivery of CTNNA1 siRNA with CA nanoparticles significantly reduced tumor volume in the initial phase of the study, while siRNAs targeting CTNNB1, TLN1, VCL, PXN, and ACTN1 genes significantly decreased the tumor burden at all time points. The tumor weights at the end of the treatments were also notably smaller compared to CA. This successfully demonstrates that targeting these dysregulated genes via RNAi and by using a suitable delivery vehicle such as CA could serve as a promising therapeutic treatment modality for breast cancers.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links