Displaying publications 301 - 320 of 407 in total

Abstract:
Sort:
  1. Ramlee MH, Beng GK, Bajuri N, Abdul Kadir MR
    Med Biol Eng Comput, 2018 Jul;56(7):1161-1171.
    PMID: 29209961 DOI: 10.1007/s11517-017-1762-3
    The provision of the most suitable rehabilitation treatment for stroke patient remains an ongoing challenge for clinicians. Fully understanding the pathomechanics of the upper limb will allow doctors to assist patients with physiotherapy treatment that will aid in full arm recovery. A biomechanical study was therefore conducted using the finite element (FE) method. A three-dimensional (3D) model of the human wrist was reconstructed using computed tomography (CT)-scanned images. A stroke model was constructed based on pathological problems, i.e. bone density reductions, cartilage wane, and spasticity. The cartilages were reconstructed as per the articulation shapes in the joint, while the ligaments were modelled using linear links. The hand grip condition was mimicked, and the resulting biomechanical characteristics of the stroke and healthy models were compared. Due to the lower thickness of the cartilages, the stroke model reported a higher contact pressure (305 MPa), specifically at the MC1-trapezium. Contrarily, a healthy model reported a contact pressure of 228 MPa. In the context of wrist extension and displacement, the stroke model (0.68° and 5.54 mm, respectively) reported a lower magnitude than the healthy model (0.98° and 9.43 mm, respectively), which agrees with previously reported works. It was therefore concluded that clinicians should take extra care in rehabilitation treatment of wrist movement in order to prevent the occurrence of other complications. Graphical abstract ᅟ.
    Matched MeSH terms: Models, Biological
  2. Tan PY, Tan TB, Chang HW, Tey BT, Chan ES, Lai OM, et al.
    J Agric Food Chem, 2017 Dec 06;65(48):10651-10657.
    PMID: 29124932 DOI: 10.1021/acs.jafc.7b03521
    Considering the health benefits of tocotrienols, continuous works have been done on the encapsulation and delivery of these compounds. In this study, we encapsulated tocotrienols in chitosan-alginate microcapsules and evaluated their release profile. Generally, these tocotrienols microcapsules (TM) displayed high thermal stability. When subjected to pH adjustments (pH 1-9), we observed that the release of tocotrienols was the highest (33.78 ± 0.18%) under basic conditions. The TM were also unstable against the effect of ionic strength, with a high release (70.73 ± 0.04%) of tocotrienols even at a low sodium chloride concentration (50 mM). As for the individual isomers, δ-tocotrienol was the most sensitive to pH and ionic strength. In contrast, β-/γ-tocotrienols were the most ionic-stable isomers but more responsive toward thermal treatment. Simulated gastrointestinal model showed that the chitosan-alginate-based TM could be used to retain tocotrienols in the gastric and subsequently release them in the intestines for possible absorption.
    Matched MeSH terms: Models, Biological
  3. Naser MM, Zulkiple A, Al Bargi WA, Khalifa NA, Daniel BD
    J Safety Res, 2017 12;63:91-98.
    PMID: 29203029 DOI: 10.1016/j.jsr.2017.08.005
    INTRODUCTION: There are a variety of challenges faced by pedestrians when they walk along and attempt to cross a road, as the most recorded accidents occur during this time. Pedestrians of all types, including both sexes with numerous aging groups, are always subjected to risk and are characterized as the most exposed road users. The increased demand for better traffic management strategies to reduce the risks at intersections, improve quality traffic management, traffic volume, and longer cycle time has further increased concerns over the past decade.

    METHOD: This paper aims to develop a sustainable pedestrian gap crossing index model based on traffic flow density. It focusses on the gaps accepted by pedestrians and their decision for street crossing, where (Log-Gap) logarithm of accepted gaps was used to optimize the result of a model for gap crossing behavior. Through a review of extant literature, 15 influential variables were extracted for further empirical analysis. Subsequently, data from the observation at an uncontrolled mid-block in Jalan Ampang in Kuala Lumpur, Malaysia was gathered and Multiple Linear Regression (MLR) and Binary Logit Model (BLM) techniques were employed to analyze the results.

    RESULTS AND CONCLUSIONS: From the results, different pedestrian behavioral characteristics were considered for a minimum gap size model, out of which only a few (four) variables could explain the pedestrian road crossing behavior while the remaining variables have an insignificant effect. Among the different variables, age, rolling gap, vehicle type, and crossing were the most influential variables. The study concludes that pedestrians' decision to cross the street depends on the pedestrian age, rolling gap, vehicle type, and size of traffic gap before crossing.

    PRACTICAL APPLICATIONS: The inferences from these models will be useful to increase pedestrian safety and performance evaluation of uncontrolled midblock road crossings in developing countries.

    Matched MeSH terms: Models, Biological
  4. Jong WL, Ung NM, Vannyat A, Rosenfeld AB, Wong JHD
    Phys Med, 2017 Oct;42:39-46.
    PMID: 29173919 DOI: 10.1016/j.ejmp.2017.08.011
    Challenges in treating lung tumours are related to the respiratory-induced tumour motion and the accuracy of dose calculation in charged particle disequilibrium condition. The dosimetric characteristics near the interface of lung and Perspex media in a moving phantom during respiratory-gated and non-gated radiotherapy were investigated using Gafchromic EBT2 and the MOSkin detector. The MOSkin detectors showed good agreement with the EBT2 films during static and gated radiotherapy. In static radiotherapy, the penumbral widths were found to be 3.66mm and 7.22mm in Perspex and lung media, respectively. In non-gated (moving) radiotherapy with 40mm respiratory amplitude, dose smearing effect was observed and the penumbral widths were increased to 28.81mm and 26.40mm, respectively. This has been reduced to 6.85mm and 9.81mm, respectively, in gated radiotherapy with 25% gating window. There were still some dose discrepancies as compared to static radiotherapy due to the residual motion. This should be taken into account in the margin generation for the target tumour.
    Matched MeSH terms: Models, Biological
  5. Naning H, Al-Darraji HAA, McDonald S, Ismail NA, Kamarulzaman A
    Asia Pac J Public Health, 2018 04;30(3):235-243.
    PMID: 29502429 DOI: 10.1177/1010539518757229
    The aim of this study was to simulate the effects of tuberculosis (TB) treatment strategies interventions in an overcrowded and poorly ventilated prison with both high (5 months) and low (3 years) turnover of inmates against improved environmental conditions. We used a deterministic transmission model to simulate the effects of treatment of latent TB infection and active TB, or the combination of both treatment strategies. Without any intervention, the TB prevalence is estimated to increase to 8.8% for a prison with low turnover of inmates but modestly stabilize at 5.8% for high-turnover prisons in a 10-year period. Reducing overcrowding from 6 to 4 inmates per housing cell and increasing the ventilation rate from 2 to 12 air changes per hour combined with any treatment strategy would further reduce the TB prevalence to as low as 0.98% for a prison with low inmate turnover.
    Matched MeSH terms: Models, Biological
  6. Yaakop AS, Chan KG, Ee R, Lim YL, Lee SK, Manan FA, et al.
    Sci Rep, 2016 09 19;6:33660.
    PMID: 27641516 DOI: 10.1038/srep33660
    Jeotgalibacillus malaysiensis, a moderate halophilic bacterium isolated from a pelagic area, can endure higher concentrations of sodium chloride (NaCl) than other Jeotgalibacillus type strains. In this study, we therefore chose to sequence and assemble the entire J. malaysiensis genome. This is the first report to provide a detailed analysis of the genomic features of J. malaysiensis, and to perform genetic comparisons between this microorganism and other halophiles. J. malaysiensis encodes a native megaplasmid (pJeoMA), which is greater than 600 kilobases in size, that is absent from other sequenced species of Jeotgalibacillus. Subsequently, RNA-Seq-based transcriptome analysis was utilised to examine adaptations of J. malaysiensis to osmotic stress. Specifically, the eggNOG (evolutionary genealogy of genes: Non-supervised Orthologous Groups) and KEGG (Kyoto Encyclopaedia of Genes and Genomes) databases were used to elucidate the overall effects of osmotic stress on the organism. Generally, saline stress significantly affected carbohydrate, energy, and amino acid metabolism, as well as fatty acid biosynthesis. Our findings also indicate that J. malaysiensis adopted a combination of approaches, including the uptake or synthesis of osmoprotectants, for surviving salt stress. Among these, proline synthesis appeared to be the preferred method for withstanding prolonged osmotic stress in J. malaysiensis.
    Matched MeSH terms: Models, Biological
  7. Mohd Firdaus MA, Agatz A, Hodson ME, Al-Khazrajy OSA, Boxall ABA
    Environ Toxicol Chem, 2018 05;37(5):1420-1429.
    PMID: 29341233 DOI: 10.1002/etc.4094
    Nanopesticides are novel plant protection products offering numerous benefits. Because nanoparticles behave differently from dissolved chemicals, the environmental risks of these materials could differ from conventional pesticides. We used soil-earthworm systems to compare the fate and uptake of analytical-grade bifenthrin to that of bifenthrin in traditional and nanoencapsulated formulations. Apparent sorption coefficients for bifenthrin were up to 3.8 times lower in the nano treatments than in the non-nano treatments, whereas dissipation half-lives of the nano treatments were up to 2 times longer. Earthworms in the nano treatments accumulated approximately 50% more bifenthrin than those in the non-nano treatments. In the non-nano treatments, most of the accumulated material was found in the earthworm tissue, whereas in the nano treatments, the majority resided in the gut. Evaluation of toxicokinetic modeling approaches showed that models incorporating the release rate of bifenthrin from the nanocapsule and distribution within the earthworm provided the best estimations of uptake from the nano-formulations. Overall, our findings indicate that the risks of nanopesticides may be different from those of conventional formulations. The modeling presented provides a starting point for assessing risks of these materials but needs to be further developed to better consider the behavior of the nanoencapsulated pesticide within the gut system. Environ Toxicol Chem 2018;37:1420-1429. © 2018 SETAC.
    Matched MeSH terms: Models, Biological
  8. Kalidasan V, Ng WH, Ishola OA, Ravichantar N, Tan JJ, Das KT
    Sci Rep, 2021 Sep 28;11(1):19265.
    PMID: 34584147 DOI: 10.1038/s41598-021-98657-7
    Gene therapy revolves around modifying genetic makeup by inserting foreign nucleic acids into targeted cells via gene delivery methods to treat a particular disease. While the genes targeted play a key role in gene therapy, the gene delivery system used is also of utmost importance as it determines the success of gene therapy. As primary cells and stem cells are often the target cells for gene therapy in clinical trials, the delivery system would need to be robust, and viral-based entries such as lentiviral vectors work best at transporting the transgene into the cells. However, even within lentiviral vectors, several parameters can affect the functionality of the delivery system. Using cardiac-derived c-kit expressing cells (CCs) as a model system, this study aims to optimize lentiviral production by investigating various experimental factors such as the generation of the lentiviral system, concentration method, and type of selection marker. Our findings showed that the 2nd generation system with pCMV-dR8.2 dvpr as the packaging plasmid produced a 7.3-fold higher yield of lentiviral production compared to psPAX2. Concentrating the virus with ultracentrifuge produced a higher viral titer at greater than 5 × 105 infectious unit values/ml (IFU/ml). And lastly, the minimum inhibitory concentration (MIC) of puromycin selection marker was 10 μg/mL and 7 μg/mL for HEK293T and CCs, demonstrating the suitability of antibiotic selection for all cell types. This encouraging data can be extrapolated and applied to other difficult-to-transfect cells, such as different types of stem cells or primary cells.
    Matched MeSH terms: Models, Biological
  9. Daszak P, Zambrana-Torrelio C, Bogich TL, Fernandez M, Epstein JH, Murray KA, et al.
    Proc Natl Acad Sci U S A, 2013 Feb 26;110 Suppl 1:3681-8.
    PMID: 22936052 DOI: 10.1073/pnas.1201243109
    Emerging infectious diseases (EIDs) pose a significant threat to human health, economic stability, and biodiversity. Despite this, the mechanisms underlying disease emergence are still not fully understood, and control measures rely heavily on mitigating the impact of EIDs after they have emerged. Here, we highlight the emergence of a zoonotic Henipavirus, Nipah virus, to demonstrate the interdisciplinary and macroecological approaches necessary to understand EID emergence. Previous work suggests that Nipah virus emerged due to the interaction of the wildlife reservoir (Pteropus spp. fruit bats) with intensively managed livestock. The emergence of this and other henipaviruses involves interactions among a suite of anthropogenic environmental changes, socioeconomic factors, and changes in demography that overlay and interact with the distribution of these pathogens in their wildlife reservoirs. Here, we demonstrate how ecological niche modeling may be used to investigate the potential role of a changing climate on the future risk for Henipavirus emergence. We show that the distribution of Henipavirus reservoirs, and therefore henipaviruses, will likely change under climate change scenarios, a fundamental precondition for disease emergence in humans. We assess the variation among climate models to estimate where Henipavirus host distribution is most likely to expand, contract, or remain stable, presenting new risks for human health. We conclude that there is substantial potential to use this modeling framework to explore the distribution of wildlife hosts under a changing climate. These approaches may directly inform current and future management and surveillance strategies aiming to improve pathogen detection and, ultimately, reduce emergence risk.
    Matched MeSH terms: Models, Biological
  10. Muhamad MAH, Che Hasan R, Md Said N, Ooi JL
    PLoS One, 2021;16(9):e0257761.
    PMID: 34555110 DOI: 10.1371/journal.pone.0257761
    Integrating Multibeam Echosounder (MBES) data (bathymetry and backscatter) and underwater video technology allows scientists to study marine habitats. However, use of such data in modeling suitable seagrass habitats in Malaysian coastal waters is still limited. This study tested multiple spatial resolutions (1 and 50 m) and analysis window sizes (3 × 3, 9 × 9, and 21 × 21 cells) probably suitable for seagrass-habitat relationships in Redang Marine Park, Terengganu, Malaysia. A maximum entropy algorithm was applied, using 12 bathymetric and backscatter predictors to develop a total of 6 seagrass habitat suitability models. The results indicated that both fine and coarse spatial resolution datasets could produce models with high accuracy (>90%). However, the models derived from the coarser resolution dataset displayed inconsistent habitat suitability maps for different analysis window sizes. In contrast, habitat models derived from the fine resolution dataset exhibited similar habitat distribution patterns for three different analysis window sizes. Bathymetry was found to be the most influential predictor in all the models. The backscatter predictors, such as angular range analysis inversion parameters (characterization and grain size), gray-level co-occurrence texture predictors, and backscatter intensity levels, were more important for coarse resolution models. Areas of highest habitat suitability for seagrass were predicted to be in shallower (<20 m) waters and scattered between fringing reefs (east to south). Some fragmented, highly suitable habitats were also identified in the shallower (<20 m) areas in the northwest of the prediction models and scattered between fringing reefs. This study highlighted the importance of investigating the suitable spatial resolution and analysis window size of predictors from MBES for modeling suitable seagrass habitats. The findings provide important insight on the use of remote acoustic sonar data to study and map seagrass distribution in Malaysia coastal water.
    Matched MeSH terms: Models, Biological
  11. Makita N, Kosugi Y, Dannoura M, Takanashi S, Niiyama K, Kassim AR, et al.
    Tree Physiol, 2012 Mar;32(3):303-12.
    PMID: 22367761 DOI: 10.1093/treephys/tps008
    The root systems of forest trees are composed of different diameters and heterogeneous physiological traits. However, the pattern of root respiration rates from finer and coarser roots across various tropical species remains unknown. To clarify how respiration is related to the morphological traits of roots, we evaluated specific root respiration and its relationships to mean root diameter (D) of various diameter and root tissue density (RTD; root mass per unit root volume; gcm(-3)) and specific root length (SRL; root length per unit root mass; mg(-1)) of the fine roots among and within 14 trees of 13 species from a primary tropical rainforest in the Pasoh Forest Reserve in Peninsular Malaysia. Coarse root (2-269mm) respiration rates increased with decreasing D, resulting in significant relationships between root respiration and diameter across species. A model based on a radial gradient of respiration rates of coarse roots simulated the exponential decrease in respiration with diameter. The respiration rate of fine roots (<2mm) was much higher and more variable than those of larger diameter roots. For fine roots, the mean respiration rates for each species increased with decreasing D. The respiration rates of fine roots declined markedly with increasing RTD and increased with increasing SRL, which explained a significant portion of the variation in the respiration among the 14 trees from 13 species examined. Our results indicate that coarse root respiration in tree species follows a basic relationship with D across species and that most of the variation in fine root respiration among species is explained by D, RTD and SRL. We found that the relationship between root respiration and morphological traits provides a quantitative basis for separating fine roots from coarse roots and that the pattern holds across different species.
    Matched MeSH terms: Models, Biological
  12. Tan MS, Rahman S, Dykes GA
    Appl Environ Microbiol, 2016 01 15;82(2):680-8.
    PMID: 26567310 DOI: 10.1128/AEM.02609-15
    Minimally processed fresh produce has been implicated as a major source of foodborne microbial pathogens globally. These pathogens must attach to the produce in order to be transmitted. Cut surfaces of produce that expose cell walls are particularly vulnerable. Little is known about the roles that different structural components (cellulose, pectin, and xyloglucan) of plant cell walls play in the attachment of foodborne bacterial pathogens. Using bacterial cellulose-derived plant cell wall models, we showed that the presence of pectin alone or xyloglucan alone affected the attachment of three Salmonella enterica strains (Salmonella enterica subsp. enterica serovar Enteritidis ATCC 13076, Salmonella enterica subsp. enterica serovar Typhimurium ATCC 14028, and Salmonella enterica subsp. indica M4) and Listeria monocytogenes ATCC 7644. In addition, we showed that this effect was modulated in the presence of both polysaccharides. Assays using pairwise combinations of S. Typhimurium ATCC 14028 and L. monocytogenes ATCC 7644 showed that bacterial attachment to all plant cell wall models was dependent on the characteristics of the individual bacterial strains and was not directly proportional to the initial concentration of the bacterial inoculum. This work showed that bacterial attachment was not determined directly by the plant cell wall model or bacterial physicochemical properties. We suggest that attachment of the Salmonella strains may be influenced by the effects of these polysaccharides on physical and structural properties of the plant cell wall model. Our findings improve the understanding of how Salmonella enterica and Listeria monocytogenes attach to plant cell walls, which may facilitate the development of better ways to prevent the attachment of these pathogens to such surfaces.
    Matched MeSH terms: Models, Biological
  13. Chen M, Zhang B, Li C, Kulaveerasingam H, Chew FT, Yu H
    Plant Physiol, 2015 Sep;169(1):391-402.
    PMID: 26152712 DOI: 10.1104/pp.15.00943
    Seed storage reserves mainly consist of starch, triacylglycerols, and storage proteins. They not only provide energy for seed germination and seedling establishment, but also supply essential dietary nutrients for human beings and animals. So far, the regulatory networks that govern the accumulation of seed storage reserves in plants are still largely unknown. Here, we show that TRANSPARENT TESTA GLABRA1 (TTG1), which encodes a WD40 repeat transcription factor involved in many aspects of plant development, plays an important role in mediating the accumulation of seed storage reserves in Arabidopsis (Arabidopsis thaliana). The dry weight of ttg1-1 embryos significantly increases compared with that of wild-type embryos, which is accompanied by an increase in the contents of starch, total protein, and fatty acids in ttg1-1 seeds. FUSCA3 (FUS3), a master regulator of seed maturation, binds directly to the TTG1 genomic region and suppresses TTG1 expression in developing seeds. TTG1 negatively regulates the accumulation of seed storage proteins partially through transcriptional repression of 2S3, a gene encoding a 2S albumin precursor. TTG1 also indirectly suppresses the expression of genes involved in either seed development or synthesis/modification of fatty acids in developing seeds. In addition, we demonstrate that the maternal allele of the TTG1 gene suppresses the accumulation of storage proteins and fatty acids in seeds. Our results suggest that TTG1 is a direct target of FUS3 in the framework of the regulatory hierarchy controlling seed filling and regulates the accumulation of seed storage proteins and fatty acids during the seed maturation process.
    Matched MeSH terms: Models, Biological
  14. Abidin NZ, Mamat M, Dangerfield B, Zulkepli JH, Baten MA, Wibowo A
    PLoS One, 2014;9(12):e114135.
    PMID: 25502170 DOI: 10.1371/journal.pone.0114135
    Poor eating behavior has been identified as one of the core contributory factors of the childhood obesity epidemic. The consequences of obesity on numerous aspects of life are thoroughly explored in the existing literature. For instance, evidence shows that obesity is linked to incidences of diseases such as heart disease, type-2 diabetes, and some cancers, as well as psychosocial problems. To respond to the increasing trends in the UK, in 2008 the government set a target to reverse the prevalence of obesity (POB) back to 2000 levels by 2020. This paper will outline the application of system dynamics (SD) optimization to simulate the effect of changes in the eating behavior of British children (aged 2 to 15 years) on weight and obesity. This study also will identify how long it will take to achieve the government's target. This paper proposed a simulation model called Intervention Childhood Obesity Dynamics (ICOD) by focusing the interrelations between various strands of knowledge in one complex human weight regulation system. The model offers distinct insights into the dynamics by capturing the complex interdependencies from the causal loop and feedback structure, with the intention to better understand how eating behaviors influence children's weight, body mass index (BMI), and POB measurement. This study proposed a set of equations that are revised from the original (baseline) equations. The new functions are constructed using a RAMP function of linear decrement in portion size and number of meal variables from 2013 until 2020 in order to achieve the 2020 desired target. Findings from the optimization analysis revealed that the 2020 target won't be achieved until 2026 at the earliest, six years late. Thus, the model suggested that a longer period may be needed to significantly reduce obesity in this population.
    Matched MeSH terms: Models, Biological
  15. Yeang HY
    Ann Bot, 2015 Jul;116(1):15-22.
    PMID: 26070640 DOI: 10.1093/aob/mcv070
    BACKGROUND AND AIMS: An endogenous rhythm synchronized to dawn cannot time photosynthesis-linked genes to peak consistently at noon since the interval between sunrise and noon changes seasonally. In this study, a solar clock model that circumvents this limitation is proposed using two daily timing references synchronized to noon and midnight. Other rhythmic genes that are not directly linked to photosynthesis, and which peak at other times, also find an adaptive advantage in entrainment to the solar rhythm.

    METHODS: Fourteen datasets extracted from three published papers were used in a meta-analysis to examine the cyclic behaviour of the Arabidopsis thaliana photosynthesis-related gene CAB2 and the clock oscillator genes TOC1 and LHY in T cycles and N-H cycles.

    KEY RESULTS: Changes in the rhythms of CAB2, TOC1 and LHY in plants subjected to non-24-h light:dark cycles matched the hypothesized changes in their behaviour as predicted by the solar clock model, thus validating it. The analysis further showed that TOC1 expression peaked ∼5·5 h after mid-day, CAB2 peaked close to noon, while LHY peaked ∼7·5 h after midnight, regardless of the cycle period, the photoperiod or the light:dark period ratio. The solar clock model correctly predicted the zeitgeber timing of these genes under 11 different lighting regimes comprising combinations of seven light periods, nine dark periods, four cycle periods and four light:dark period ratios. In short cycles that terminated before LHY could be expressed, the solar clock correctly predicted zeitgeber timing of its expression in the following cycle.

    CONCLUSIONS: Regulation of gene phases by the solar clock enables the plant to tell the time, by which means a large number of genes are regulated. This facilitates the initiation of gene expression even before the arrival of sunrise, sunset or noon, thus allowing the plant to 'anticipate' dawn, dusk or mid-day respectively, independently of the photoperiod.

    Matched MeSH terms: Models, Biological
  16. Wongsathapornchai K, Salman MD, Edwards JR, Morley PS, Keefe TJ, Van Campen H, et al.
    Am J Vet Res, 2008 Feb;69(2):252-60.
    PMID: 18241023 DOI: 10.2460/ajvr.69.2.252
    To assess the likelihood of an introduction of foot-and-mouth disease (FMD) into the Malaysia-Thailand-Myanmar (MTM) peninsula through terrestrial movement of livestock.
    Matched MeSH terms: Models, Biological
  17. Vedam VKV, Boaz K, Natarajan S, Ganapathy S
    J Clin Lab Anal, 2017 May;31(3).
    PMID: 27637993 DOI: 10.1002/jcla.22048
    BACKGROUND: The aim of this study was to evaluate salivary amylase in patients with primary oral cancer undergoing radiotherapy as the main modality of treatment.

    MATERIALS/METHODS: The study was conducted on ten histologically proven cases of oral cancer undergoing radiotherapy. Stimulated whole saliva was collected at three stages of radiotherapy-0, 3, and 6 weeks. Salivary amylase was estimated using Henry-Chiamori method and comparison was made with appropriate age- and gender-matched controls.

    RESULTS: Salivary amylase levels showed significant decrease in healthy subjects when compared to oral cancer patients (P < 0.001). The latter group also showed changing trend with initial decrease from 0 to 3 weeks followed by increase from 3 to 6 weeks following radiotherapy (P < 0.0528).

    CONCLUSIONS: The trend in changes in the levels of salivary amylase could be used as a surrogate marker of salivary gland function in patients with oral cancer undergoing radiotherapy as primary treatment.

    Matched MeSH terms: Models, Biological
  18. Billah MA, Miah MM, Khan MN
    PLoS One, 2020;15(11):e0242128.
    PMID: 33175914 DOI: 10.1371/journal.pone.0242128
    BACKGROUND: The coronavirus (SARS-COV-2) is now a global concern because of its higher transmission capacity and associated adverse consequences including death. The reproductive number of coronavirus provides an estimate of the possible extent of the transmission. This study aims to provide a summary reproductive number of coronavirus based on available global level evidence.

    METHODS: A total of three databases were searched on September 15, 2020: PubMed, Web of Science, and Science Direct. The searches were conducted using a pre-specified search strategy to record studies reported the reproductive number of coronavirus from its inception in December 2019. It includes keywords of coronavirus and its reproductive number, which were combined using the Boolean operators (AND, OR). Based on the included studies, we estimated a summary reproductive number by using the meta-analysis. We used narrative synthesis to explain the results of the studies where the reproductive number was reported, however, were not possible to include in the meta-analysis because of the lack of data (mostly due to confidence interval was not reported).

    RESULTS: Total of 42 studies included in this review whereas 29 of them were included in the meta-analysis. The estimated summary reproductive number was 2.87 (95% CI, 2.39-3.44). We found evidence of very high heterogeneity (99.5%) of the reproductive number reported in the included studies. Our sub-group analysis was found the significant variations of reproductive number across the country for which it was estimated, method and model that were used to estimate the reproductive number, number of case that was considered to estimate the reproductive number, and the type of reproductive number that was estimated. The highest reproductive number was reported for the Diamond Princess Cruise Ship in Japan (14.8). In the country-level, the higher reproductive number was reported for France (R, 6.32, 95% CI, 5.72-6.99) following Germany (R, 6.07, 95% CI, 5.51-6.69) and Spain (R, 3.56, 95% CI, 1.62-7.82). The higher reproductive number was reported if it was estimated by using the Markov Chain Monte Carlo method (MCMC) method and the Epidemic curve model. We also reported significant heterogeneity of the type of reproductive number- a high-value reported if it was the time-dependent reproductive number.

    CONCLUSION: The estimated summary reproductive number indicates an exponential increase of coronavirus infection in the coming days. Comprehensive policies and programs are important to reduce new infections as well as the associated adverse consequences including death.

    Matched MeSH terms: Models, Biological
  19. Muniyandi RC, Zin AM
    Pak J Biol Sci, 2011 Dec 15;14(24):1100-8.
    PMID: 22335049
    Ligand-Receptor Networks of TGF-beta plays essential role in transmitting a wide range of extracellular signals that affect many cellular processes such as cell growth. However, the modeling of these networks with conventional approach such as ordinary differential equations has not taken into account, the spatial structure and stochastic behavior of processes involve in these networks. Membrane computing as the alternatives approach provides spatial structure for molecular computation in which processes are evaluated in a non-deterministic and maximally parallel way. This study is carried out to evaluate the membrane computing model of Ligand-Receptor Networks of TGF-beta with model checking approach. The results show that membrane computing model has sustained the behaviors and properties of Ligand-Receptor Networks of TGF-beta. This reinforce that membrane computing is capable in analyzing processes and behaviors in hierarchical structure of cell such as Ligand-Receptor Networks of TGF-beta better than the deterministic approach of conventional mathematical models.
    Matched MeSH terms: Models, Biological
  20. Thanimalai S, Shafie AA, Hassali MA, Sinnadurai J
    Int J Clin Pharm, 2013 Oct;35(5):736-43.
    PMID: 23715759 DOI: 10.1007/s11096-013-9796-6
    BACKGROUNDS: Limited evidence is available regarding pharmacist managed anticoagulation clinic in the Southeast Asian region where there is marked difference in terms of care model, genetic composition and patient demographics.

    OBJECTIVES: This study aimed at comparing the anticoagulation clinic managed by the pharmacist with physician advisory and the usual medical care provided in Kuala Lumpur Hospital (KLH) in terms of anticoagulation control and adverse outcomes.

    SETTING: A 2,302 bedded government tertiary referral hospital in Malaysia.

    METHODS: A 6-month retrospective cohort study of the effectiveness of two models of anticoagulation care, the pharmacist managed anticoagulation clinic which is known as warfarin medication therapy adherence clinic (WMTAC) and usual medical clinic (UMC) in KLH was conducted, where a random number generator was used to recruit patients. The UMC patients received standard medical care where they are managed by rotational medical officers in the physicians' clinic. As for the WMTAC with physician advisory, the pharmacist will counsel and review the patients internationalised normalization ratio at each clinic visit and also adjust the patients' warfarin dose accordingly. Patients are referred to physicians if immediate attention is required.

    MAIN OUTCOME MEASURE: The main therapeutic outcome is time in therapeutic range (TTR) both actual and expanded TTR and thromboembolic and bleeding complications.

    RESULTS: Each of the WMTAC and usual medical care recruited 92 patients, which totals to 184 patients. The patient demographics in terms of age, race and indication of treatment were comparable. At the end of the 6 months follow-up, patients in the WMTAC group had significantly higher actual-TTR (65.1 vs. 48.3 %; p < 0.05) compared to those in usual medical care group. Rates of admission were 6.5 versus 28.2 events per 100 person-years for the WMTAC and UMC groups, respectively. Though the bleeding incidences were not significantly different, it was reduced.

    CONCLUSIONS: These findings will impact local warfarin patient management services and policies because there was no available evidence supporting the role of pharmacists in the management of warfarin patients prior to this study.
    Matched MeSH terms: Models, Biological*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links