Displaying publications 301 - 320 of 342 in total

Abstract:
Sort:
  1. Saharudin DM, Jeswani HK, Azapagic A
    J Environ Manage, 2024 Dec;371:123250.
    PMID: 39547020 DOI: 10.1016/j.jenvman.2024.123250
    Forest carbon sequestration is a promising negative emissions technology as it is relatively simple and inexpensive. Its potential for climate mitigation could be particularly high in tropical rainforests as they can store more carbon at a faster rate. However, the understanding of its sustainability is limited due to the scarcity of studies. Focusing on reforestation, this work is the first to present an extensive environmental and economic assessment of forest CO2 sequestration in a tropical rainforest country such as Malaysia. Life cycle assessment (LCA) and life cycle costing (LCC) are combined to evaluate the sustainability of reforestation with four tropical tree species: keruing (Dipterocarpus spp.), meranti (Shorea leprosula), rubber (Hevea brasiliensis) and kapok (Ceiba Pentandra). Considering the horizon of 60 years, the system boundaries comprise site infrastructure, land clearing, tree planting and growing, and forest management. The dynamics of greenhouse gas (GHG) and other air emissions are also considered over the period, including carbon sequestration and land use change, nitrous oxide and ethylene emissions. All tree species lead to a net-negative GHG emissions, ranging from -558 to -808 kg CO2 eq./t CO2 removed, with kapok having the highest and rubber the lowest sequestration potential. The latter has the highest values in 13 other impact categories considered, while keruing is the best option for 12 impacts. The main environmental hotspot for all species is the forest management stage. The LCC range from -US$17 to US$12/t CO2 removed. Reforestation on lands available in Malaysia could remove 105.9-473.3 Mt CO2 over 60 years, or 1.8-7.9 Mt CO2/yr, equivalent to 7.4-33 % of the agricultural emissions. Rubber and kapok could generate US$640 M and US$8.06 bn in profits over 60 years from latex and fibre, respectively. Therefore, reforestation has a significant potential to help tropical countries, such as Malaysia, achieve net-negative emissions, while at the same time boosting the economy.
  2. Yue S, Bajuri NH, Khatib SFA, Lee Y
    J Environ Manage, 2024 Nov;370:122423.
    PMID: 39243639 DOI: 10.1016/j.jenvman.2024.122423
    As new quality productivity (NQP) emerges as a rising star of productivity that can effectively leverage technological innovation and sustainability, this study aims to explore the relationship between NQP and environmental innovation, with a particular focus on the roles of managerial empowerment and board centralization within the context of China A-share listed companies. Utilizing the entire sample of China A-share market from 2013 to 2022, the study analyses the effectiveness of various dimensions reflecting innovation engagement among Chinese listed companies. For measuring NQP, the entropy method is employed to calculate the weights. By controlling for industry and year effects, the study examines both the main and moderating effects of managerial empowerment and board centralization. Additionally, heterogeneity tests, robustness checks, and two-stage least squares (2SLS) estimation were conducted to address endogeneity concerns. The results demonstrate that NQP significantly enhances environmental innovation, with managerial empowerment supporting this positive effect and board centralization obstructing it. The positive effect of NQP is particularly evident in state-owned enterprises, while in heavily polluting industries, the anticipated positive moderating effect of top managers disappears due to strict regulatory environments. Furthermore, board centralization negatively moderates environmental innovation, especially in lightly polluting sectors where internal governance is more sensitive. The study underscores the importance for policymakers to tailor regulations that balance managerial empowerment and board centralization to enhance the transformation of NQP into environmental innovation. Future research is needed to further investigate different background settings and the mechanisms through which NQP influences sustainability.
  3. Bashir MF, Sharif A, Staniewski MW, Ma B, Zhao W
    J Environ Manage, 2024 Nov;370:122304.
    PMID: 39250852 DOI: 10.1016/j.jenvman.2024.122304
    The integrated economic reforms in recent years have transformed human life, however, the subsequent rise in environmental challenges necessitates sustainable development goals to ensure net-zero transformation. Within the context of modern energy, economic, and environmental transformation, we deliberate how environmental taxes, energy transition, and sustainable environmental innovation impact climate change in 38 OECD economies. Our robust empirical investigation allows us to report that environmental taxation, sustainable environmental technology, and energy transition lower but GDP and trade openness exacerbate ecological challenges. We also divide the dataset in G7 and the rest of the OECD groups to document the varying impact of environmental policies within OECD economies. Our econometric analysis helps us report novel policy frameworks to solve climate challenges under the UN SDG agenda.
  4. Kafy AA, Dey NN, Saha M, Altuwaijri HA, Fattah MA, Rahaman ZA, et al.
    J Environ Manage, 2024 Nov;370:122427.
    PMID: 39305877 DOI: 10.1016/j.jenvman.2024.122427
    Climate change and rapid urbanization are dramatically altering coastal ecosystems worldwide, with significant implications for land surface temperatures (LST) and carbon stock concentration (CSC). This study investigates the impacts of day and night time LST dynamics on CSC in Cox's Bazar, Bangladesh, from 1996 to 2021, with future projections to 2041. Using Landsat and MODIS imagery, we found that mean daytime LST increased by 3.57 °C over the 25-year period, while nighttime LST showed a slight decrease of 0.05 °C. Concurrently, areas with no carbon storage increased by 355.78%, while high and very high CSC zones declined by 14.15% and 47.78%, respectively. The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model estimated a 28.64 km2 reduction in high CSC areas from 1996 to 2021. Statistical analysis revealed strong negative correlations between LST and vegetation indices (R2 = -0.795 to -0.842, p 32 °C, while areas with LST <24 °C may decrease to 1.68%. These observations underscore the pressing necessity for sustainable strategies in urban planning and conservation in swiftly evolving coastal areas, especially considering the challenges posed by climate change and population growth.
  5. Li Z, Meng F, Wu S, Afthanorhan A, Hao Y
    J Environ Manage, 2024 Nov;370:122782.
    PMID: 39369521 DOI: 10.1016/j.jenvman.2024.122782
    The impact of Low Carbon Pilot Policies (LCPPs) on carbon reduction and energy efficiency has been extensively studied. However, the potential of these policies to promote clean energy transition (CET) in rural households remains underexplored. This article constructed a staggered-DID model using data from the China Family Panel Studies (CFPS) to investigate the impact and mechanisms of LCPPs on rural households' CET. The findings indicate that LCPPs significantly enhance the CET among rural households. Moreover, the effects of LCPPs vary across cities, while differences within communities and households are less pronounced. Mechanism analysis reveals that LCPPs facilitate rural households' CET through income effects, infrastructure improvements, and enhanced low-carbon awareness. Notably, the income and low-carbon awareness effects are heterogeneous. Additionally, LCPPs have increased rural households' expenditures on home-cooked meals. We estimate the average fixed cost of the CET for rural households to be approximately $404.495. These insights provide valuable empirical evidence that can guide other countries and regions in promoting CET in rural areas.
  6. Zhao P, Md Ali Z, Nik Hashim NH, Ahmad Y, Wang H
    J Environ Manage, 2024 Nov;370:122520.
    PMID: 39305874 DOI: 10.1016/j.jenvman.2024.122520
    Urban regeneration involves a highly contested process of social transformation. Examples from China have shown that this process has led to poor social sustainability. Previous studies have not adequately addressed the issue of poor social sustainability. This study aims to address this gap by developing a set of valid and reliable performance indicators for assessing the social sustainability of urban regeneration initiatives in China's Historic Urban Areas (HUAs). Through an extensive literature review and a Delphi survey, critical social sustainability factors facilitating urban regeneration were identified. An assessment tool was subsequently proposed, comprising eight themes, 29 indicators, and a corresponding point-scoring system. Finally, Xi'an was selected as a case study to apply and test the applicability of the tool and to evaluate social sustainability performance to further explore improvement strategies. The results show that adequate housing, housing quality, participation in regeneration initiatives, and safe design were the most critical indicators determining the social sustainability of urban regeneration. Additionally, the results reveal indicators with limited contribution to achieving social sustainability in Xi'an. The research findings have policy implications for pushing socially sustainable urban regeneration initiatives in China.
  7. Bongosia JG, Al-Gailani A, Kolosz BW, Loy Chun Minh A, Lock SSM, Cheah KW, et al.
    J Environ Manage, 2024 Nov;370:122558.
    PMID: 39303585 DOI: 10.1016/j.jenvman.2024.122558
    As the world faces the brink of climatological disaster, it is crucial to utilize all available resources to facilitate environmental remediation, especially by accommodating waste streams. Lignocellulosic waste residues can be transformed into mesoporous biochar structures with substantial pore capacity. While biochars are considered a method of carbon dioxide removal (CDR), they are in fact an environmental double-edged sword that can be used to extract metal ions from water bodies. Biochars possess high chemical affinities through chemisorption pathways that are tuneable to specific pH conditions. This work demonstrates how biochars can be enhanced to maximise their surface area and porosity for the removal of Cu (II) in solution. It was found that bagasse derived mesoporous biochars operate preferentially at high pH (basic conditions), with the 1.18 mKOH/mSCB material reaching 97.85% Cu (II) removal in 5 min. This result is in stark contrast with the majority of biochar adsorbents that are only effective at low pH (acidic conditions). As a result, the biochars produced in this work can be directly applied to ancestral landfill sites and carbonate-rich mine waters which are highly basic by nature, preventing further metal infiltration and reverse sullied water supplies. Furthermore, to assess the value in the use of biochars produced and applied in this way, a techno-economic assessment was carried out to determine the true cost of biochar synthesis, with possible routes for revenue post-Cu being removed from the biochar.
  8. Kakar SK, Ali J, Wang J, Wu X, Arshed N, Le Hien TT, et al.
    J Environ Manage, 2024 Nov;370:122970.
    PMID: 39426172 DOI: 10.1016/j.jenvman.2024.122970
    PURPOSE: The purpose of this study is to investigate how industrialization, financial development, electricity consumption, trade openness, and green FinTech affect on carbon emissions asymmetrically in Asian countries.

    DESIGN: Method/Approach: The study examined 29 years of panel data from 39 Asian countries from 1995 to 2022, sourced from World Development Indicators (WDI) and the International Monetary Fund (IMF). The study constructs a green financial technology index using principal component analysis (PCA). The study utilizes an Asymmetric Panel Quantile Autoregressive Distributive Lag (A-QARDL) model with pooled mean group (PMG) specifications to explore effects that exhibit cross-sectional homogeneous in the long-run, but heterogeneous in the short-run effects.

    FINDINGS: Industrialization and financial development have a strongly asymmetric impact on carbon emissions. Industrialization causes an increase in carbon emissions at various quantiles, while green FinTech plays a crucial role in mitigating these carbon emissions. Trade openness and domestic credit to the private sector also help reduce carbon emissions.

    RESEARCH LIMITATIONS AND IMPLICATIONS: The study emphasizes the significance of employing green FinTech techniques and using renewable energy sources to meet sustainable industrialization and sustainability goals in Asian countries. The policy consequences include promoting environmentally friendly industrial practices, encouraging green financial investments, and boosting government financing for private sector research and development to mitigate carbon emissions.

    ORIGINALITY/VALUE: The study employs robust modeling to analyze the role of green FinTech to enhance industrial sustainability. Both Industrialization and deindustrialization have an impact on economic emissions, and the potential of green FinTech's to promote sustainability contributes to the environment protection strategy.

  9. Cai K, Du J, Yan L, Luan Z, He Y, Shen J, et al.
    J Environ Manage, 2024 Nov;370:122909.
    PMID: 39405840 DOI: 10.1016/j.jenvman.2024.122909
    Given the research situation of toxic metals (TMs) pollution in farmland soil, it is very critical to study the clay influence on TMs environmental behavior to meet the aim of lowering TMs pollution. This research explores the association among clay minerals and TMs and the health risks in TMs combined polluted farmland of northern China. In this study, agricultural soil, wheat grain, and atmospheric sediments from nonferrous metal smelting (NMS) areas were collected and investigated to determine the effect of clay minerals on TMs. The results show that the content ranges of Cd (0.199 mg/kg ∼1.98 × 102 mg/kg), Pb (0.228 × 102 mg/kg ∼ 4.87 × 103 mg/kg), Cu (0.187 × 102 mg/kg ∼ 4.57 × 103 mg/kg), and Zn (0.559 × 102 mg/kg ∼ 3.04 × 103 mg/kg) in the agricultural soil. In particular, Cd has reached heavy pollution by the high pollution index (6.74). The findings indicate that Cd and Pb in wheat grain were influenced by their exchangeable fractions in soil, according to a significant relationship between Cd and Pb in soil and wheat grain. XRD-SEM suggests that TMs come from atmospheric sediments associated with NMS emissions by microsphere signatures with surface burn marks. Meanwhile, Geographical detector indicated that clay was the primary contributor to spatial distribution of Cd and Pb. In addition, XRD results showed that I/S (a mixed layer of illite and smectite), illite, chlorite, and kaolinite co-existed. Whereas the clay minerals with this ratio did not demonstrate better adsorption capacities for Cd and Pb due to the Cd percentage of the residual fraction being less than 9%. The result of negative correlation between exchangeable Cd and clay minerals implies that illite, chlorite, and kaolinite may preferentially adsorb Cd and Pb. It is similar to the relationship between Cd and Pb in wheat grain and illite, chlorite, and kaolinite. In addition, the health assessment result show that the negative correlation between clay minerals and the noncarcinogenic hazard quotient (HQ) and indicate that clay minerals could reduce the noncarcinogenic risk of Pb and Cd for children. Our findings provide a potential mechanism and application of clay minerals for the remediation of soil contaminated with TMs.
  10. Bashir MA, Qing L, Dewil R, Xi Z, Razi U, Jingting L
    J Environ Manage, 2024 Sep;367:122058.
    PMID: 39106799 DOI: 10.1016/j.jenvman.2024.122058
    This study explores the association between natural resources rent, industrial value addition, banking development, renewable energy consumption, total reserves and environmental quality in the dynamic context of BRICS nations from 1995 to 2019. BRICS economies are responsible for global greenhouse gas emissions and confront pressing environmental challenges, including biodiversity loss and pollution. For the dependent variable, the environmental quality, the study constructed a composite index using PCA for all environmental indicators where interdependencies among variables are prevalent. Besides this, the study incorporates two interaction terms to determine the indirect influence of natural resource rent and banking development on environmental quality through the mediating role of industrial value addition. By applying the CS-ARDL technique, the outcomes of the study reveal that natural resources rent, industrial value addition, and total reserves positively influence ENQ, indicating the adverse consequences of industrial sectors on environmental quality and continued environmental degradation due to resource-intensive industrial production, underscoring the urgency of sustainable resource management. In contrast, banking development and renewable energy consumption negatively influence ENQ, signifying the positive role of developed banking sectors in supporting eco-friendly projects and enhancing environmental quality. This study offers valuable insights for policy interventions to foster a more sustainable future.
  11. Gholizadeh M, Shadi A, Abadi A, Nemati M, Senapathi V, Karthikeyan S
    J Environ Manage, 2023 Oct 15;344:118386.
    PMID: 37352628 DOI: 10.1016/j.jenvman.2023.118386
    Global production of plastics has increased dramatically in recent decades and is considered a major threat to marine life and human health due to their stability, persistence, and potential to move through food chains. The study was conducted to detect, identify and quantify microplastics (MP) in the gastrointestinal tract (GI) of some commercial fish species in the North Persian Gulf in Bushehr Province: Psettodes erumei, Sphyraena jello, Sillago sihama, Metapenaeus affinis and Portunus segnis. A total of 216 plastic particles were collected from 102 individuals (72.68% of all sampled individuals; MP prevalence of 85.1% for M. affinis, 80% for P. segnis, 70% for P.erumei, 60.3% for S.sihama, 45.2% for S.jello). The average number of microplastics per organism was 2.26 ± 0.38 MP/ind (considering only species that ingested plastic, n = 102) and 1.51 ± 0.40 pieces/ind (considering all species studied, n = 140). Microfibers accounted for 58.49% of the total microplastics, followed by fragments (33.02%) and pellets (8.49%). The most common color of microplastic was black (52.83%), followed by blue (22.64%) and transparent (15.09%). The length of microplastic ranged from 100 to 5000 μm with an average of 854 ± 312 μm. Microplastics were significantly (p 
  12. Zhang R, Zhang Y, Goei R, Oh WD, Zhang Z, He C
    J Environ Manage, 2023 Oct 15;344:118441.
    PMID: 37379626 DOI: 10.1016/j.jenvman.2023.118441
    To realize sound disposal of hyperaccumulator harvested from phytoremediation, hydrothermal carbonization (HTC) has been employed to obtain superior hydrochar adsorbents for removal of phosphate and ammonium from water body. A series of hydrochars have been prepared under tuned HTC conditions to tailor hydrochar with desired properties. Generally, increased temperature and prolonged reaction time facilitated acidic oxygen functional groups on hydrochars, thereby improving adsorption capacity of hydrochar. In single solute system, a superior hydrochar, derived from HTC under 260 °C for 2 h, achieved a maximum phosphate and ammonium adsorption capacity of 52.46 mg/g and 27.56 mg/g at 45 °C, respectively. In binary system, synergistic adsorption was observed only in lower solute concentration, whereas competitive adsorption occurred under higher solute concentration. Characterization and adsorption kinetics suggested chemisorption may dominate the adsorption process, thus the adsorption capacity could be improved by tuning pHpzc of hydrochar. This study firstly demonstrates the sustainable utilization of hyperaccumulators into nutrients-enriched hydrochar as fertilizer for in-situ phytoremediation of contaminated sites with minimized environmental risks towards circular economy.
  13. Amesho KTT, Chinglenthoiba C, Samsudin MSAB, Lani MN, Pandey A, Desa MNM, et al.
    J Environ Manage, 2023 Oct 15;344:118713.
    PMID: 37567004 DOI: 10.1016/j.jenvman.2023.118713
    Microplastics (MPs) have become a prevalent environmental concern, exerting detrimental effects on marine and terrestrial ecosystems, as well as human health. Addressing this urgent issue necessitates the implementation of coordinated waste management policies and strategies. In this study, we present a comprehensive review focusing on key results and the underlying mechanisms associated with microplastics. We examine their sources and pathways, elucidate their ecological and human health impacts, and evaluate the current state of waste management policies. By drawing upon recent research and pertinent case studies, we propose a range of practical solutions, encompassing enhanced recycling and waste reduction measures, product redesign, and innovative technological interventions. Moreover, we emphasize the imperative for collaboration and cooperation across sectors and jurisdictions to effectively tackle this pressing environmental challenge. The findings of this study contribute to the broader understanding of microplastics and provide valuable insights for policymakers, researchers, and stakeholders alike.
  14. Xu T, Tang X, Qiu M, Lv X, Shi Y, Zhou Y, et al.
    J Environ Manage, 2023 Oct 15;344:118718.
    PMID: 37541001 DOI: 10.1016/j.jenvman.2023.118718
    Antibiotic-containing wastewater is a typical biochemical refractory organic wastewater and general treatment methods cannot effectively and quickly degrade the antibiotic molecules. In this study, a novel boron-doped diamond (BDD) pulse electrochemical oxidation (PEO) technology was proposed for the efficient removal of levofloxacin (LFXN) from wastewater. The effects of current density (j), initial pH (pH0), frequency (f), electrolyte types and initial concentration (c0(LFXN)) on the degradation of LFXN were systematically investigated. The degradation kinetics under four different processes have also been studied. The possible degradation mechanism of LFXN was proposed by Density functional theory calculation and analysis of degradation intermediates. The results showed that under the optimal parameters, the COD removal efficiency (η(COD)) was 94.4% and the energy consumption (EEC) was 81.43 kWh·m-3 at t = 120 min. The degradation of LFXN at pH = 2.8/c(H2O2) followed pseudo-first-order kinetics. The apparent rate constant was 1.33 × 10-2 min-1, which was much higher than other processes. The degradation rate of LFXN was as follows: pH = 2.8/c(H2O2) > pH = 2.8 > pH = 7/c(H2O2) > pH = 7. Ten aromatic intermediates were formed during the degradation of LFXN, which were further degraded to F-, NH4+, NO3-, CO2 and H2O. This study provides a promising approach for efficiently treating LFXN antibiotic wastewater by pulsed electrochemical oxidation with a BDD electrode without adding H2O2.
  15. Nuid M, Aris A, Krishnen R, Chelliapan S, Muda K
    J Environ Manage, 2023 Oct 15;344:118501.
    PMID: 37418913 DOI: 10.1016/j.jenvman.2023.118501
    This study was to develop biogranules using a sequencing batch reactor (SBR) and to evaluate the effect of pineapple wastewater (PW) as a co-substrate for treating real textile wastewater (RTW). The biogranular system cycle was 24 h (2 stages of phase), with an anaerobic phase (17.8 h) followed by an aerobic phase (5.8 h) for every stage of the phase. The concentration of pineapple wastewater was the main factor studied in influencing COD and color removal efficiency. Pineapple wastewater with different concentrations (7, 5, 4, 3, and 0% v/v) makes a total volume of 3 L and causes the OLRs to vary from 2.90 to 0.23 kg COD/m3day. The system achieved 55% of average color removal and 88% of average COD removal at 7%v/v PW concentration during treatment. With the addition of PW, the removal increased significantly. The experiment on the treatment of RTW without any added nutrients proved the importance of co-substrate in dye degradation.
  16. Bourtsalas ACT, Yepes IM, Tian Y
    J Environ Manage, 2023 Oct 15;344:118604.
    PMID: 37459814 DOI: 10.1016/j.jenvman.2023.118604
    This study analyzes the regional implications of China's 2017 import ban on plastic waste by examining U.S. census data. A statistically significant decrease in total U.S. plastic waste exports was found, dropping from about 1.4 million tons to 0.6 million tons in the post-ban period. California remained the top exporter, throughout both pre- and post-ban periods, while South Carolina exhibited the highest per capita exports. Malaysia emerged as the largest importer of U.S. plastic waste, followed by Vietnam, Indonesia, and Thailand. The ban also led to a change in the composition of the exported plastic waste. Ethylene polymers increased from 32.6% of total exports in the pre-ban period to 46.9% in the post-ban period. Other plastics (vinyl chloride polymers, styrene polymers, and for plastics not elsewhere specified or included) decreased from 67.4% of total exports in the pre-ban period to 53.1% in the post-ban period. Moreover, we found that exporting plastic waste has significant environmental and human health impacts. For example, the Global Warming Potential (GWP) decreased from 20 million tons CO2-eq in the scenario where 100% of plastics are exported, or 25 million tons exported from the U.S. since 2002, to -11.1 million tons CO2-eq in the scenario where 100% of plastics are treated domestically. Transportation exacerbates these impacts for exported waste scenarios, increasing to 5.4 million tons CO2-eq when plastics are exported by ship while decreasing to 0.9 million tons CO2-eq for domestic treatment. Although exporting plastic waste is initially cost-effective, our study highlights that investing in domestic waste management can yield significant long-term benefits, considering the environmental and public health impacts. Therefore, it is crucial to prioritize context-specific solutions to address the challenges of the evolving global plastic waste landscape.
  17. Tee WT, Loh NYL, Hiew BYZ, Show PL, Hanson S, Gan S, et al.
    J Environ Manage, 2023 Oct 15;344:118363.
    PMID: 37413724 DOI: 10.1016/j.jenvman.2023.118363
    Three-dimensional heteroatom-doped graphene presents a state-of-the-art approach for effective remediation of pharmaceutical wastewater on account of its distinguished adsorption and physicochemical attributes. Amitriptyline is an emerging tricyclic antidepressant pollutant posing severe risks to living habitats through water supply and food chain. With ultra-large surface area and plentiful chemical functional groups, graphene oxide is a favorable adsorbent for decontaminating polluted water. Herein, a new boron-doped graphene oxide composite reinforced with carboxymethyl cellulose was successfully developed via solution-based synthesis. Characterization study revealed that the adsorbent was formed by graphene sheets intertwined into a porous network and engrafted with 13.37 at% of boron. The adsorbent has a zero charge at pH 6 and contained various chemical functional groups favoring the attachment of amitriptyline. It was also found that a mere 10 mg of adsorbent was able to achieve relatively high amitriptyline removal (89.31%) at 50 ppm solution concentration and 30 °C. The amitriptyline adsorption attained equilibrium within 60 min across solution concentrations ranging from 10 to 300 ppm. The kinetic and equilibrium of amitriptyline adsorption were well correlated to the pseudo-second-order and Langmuir models, respectively, portraying the highest Langmuir adsorption capacity of 737.4 mg/g. Notably, the predominant mechanism was chemisorption assisted by physisorption that contributed to the outstanding removal of amitriptyline. The saturated adsorbent was sufficiently regenerated using ethanol eluent. The results highlighted the impressive performance of the as-synthesized boron-doped adsorbent in treating amitriptyline-containing waste effluent.
  18. Mengting Z, Duan L, Zhao Y, Song Y, Xia S, Gikas P, et al.
    J Environ Manage, 2023 Nov 01;345:118772.
    PMID: 37597373 DOI: 10.1016/j.jenvman.2023.118772
    This work investigates the use of novel BiOI@ZIF-8 nanocomposite for the removal of acetaminophen (Ace) from synthetic wastewater. The samples were analyzed using FTIR, XRD, XPS, DRS, PL, FESEM-EDS, and ESR techniques. The effects of the loading capacity of ZIF-8 on the photocatalytic oxidation performance of bismuth oxyiodide (BiOI) were studied. The photocatalytic degradation of Ace was maximized by optimizing pH, reaction time and the amount of photocatalyst. On this basis, the removal mechanisms of the target pollutant by the nanocomposite and its photodegradation pathways were elucidated. Under optimized conditions of 1 g/L of composite, pH 6.8, and 4 h of reaction time, it was found that the BiOI@ZIF-8 (w/w = 1:0.01) nanocomposite exhibited the highest Ace removal (94%), as compared to that of other loading ratios at the same Ace concentration of 25 mg/L. Although this result was encouraging, the treated wastewater still did not satisfy the required statutory of 0.2 mg/L. It is suggested that the further biological processes need to be adopted to complement Ace removal in the samples. To sustain its economic viability for wastewater treatment, the spent composite still could be reused for consecutive five cycles with 82% of regeneration efficiency. Overall, this series of work shows that the nanocomposite was a promising photocatalyst for Ace removal from wastewater samples.
  19. Zulkernain NH, Uvarajan T, Ng CC
    J Environ Manage, 2023 Sep 01;341:117926.
    PMID: 37163837 DOI: 10.1016/j.jenvman.2023.117926
    Phytoremediation is a biological remediation technique known for low-cost technology and environmentally friendly approach, which employs plants to extract, stabilise, and transform various compounds, such as potentially toxic elements (PTEs), in the soil or water. Recent developments in utilising chelating agents soil remediation have led to a renewed interest in chelate-induced phytoremediation. This review article summarises the roles of various chelating agents and the mechanisms of chelate-induced phytoremediation. This paper also discusses the recent findings on the impacts of chelating agents on PTEs uptake and plant growth and development in phytoremediation. It was found that the chelating agents have increased the rate of metal absorption and translocation up to 45% from roots to the aboveground plant parts during PTEs phytoremediation. Besides, it was also explored that the plants may experience some phytotoxicity after adding chelating agents to the soil. However, due to the leaching potential of synthetic chelating agents, the use of organic chelants have been explored to be used in PTEs phytoremediation. Finally, this paper also presents comprehensive insights on the significance of using chelating agents through SWOT analysis to discuss the advantages and limitations of chelate-induced phytoremediation.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links