Chemical composition and flocculation efficiency were investigated for a commercially produced tannin - based coagulant and flocculant (Tanfloc). The results of Fourier Transform Infrared Spectroscopy (FTIR) and Energy Dispersive Spectroscopy (EDX) confirmed what claimed about the chemical composition of Tanfloc. For moderate polluted municipal wastewater investigated in both jar test and pilot plant, Tanfloc showed high turbidity removal efficiency of approximately 90%, while removal efficiencies of BOD5 and COD were around 60%. According to floc size distribution, Tanfloc was able to show distinct performance compared to Polyaluminum chloride (PAC). While 90% of flocs produced by Tanfloc were smaller than 144 micron, they were smaller than 96 micron for PAC. Practically, zeta potential measurement showed the cationic nature of Tanfloc and suggested coincidence of charge neutralization and another flocculation mechanism (bridging or patch flocculation). Sludge Volumetric Index (SVI) measurements were in agreement with the numbers found in the literature, and they were less than 160 mL/g. Calcium cation as flocculation aid showed significant improvement of flocculation efficiency compared to other cations. Finally Tanfloc showed competing performance compared to PAC in terms of turbidity, BOD5 and COD removal, floc size and sludge characteristics.
Amauroderma rugosum is a wild mushroom species widely distributed in tropics and is classified under the class of Basidiomycetes. Basidiomycetes are well-known for their abilities of producing lignocellulolytic enzymes such as lignin peroxidase (LiP), laccase (Lac) and manganese peroxidase (MnP). Different factors such as nutrient sources, incubation period and agitation affect the production of lignocellulolytic enzymes. The A. rugosum produced LiP in the medium supplemented with potato dextrose broth (PDB), 0.5% yeast and 1.0% saw dust at 26.70±3.31 U/mL. However, the LiP activity was increased to 106.32±5.32 U/mL when supplemented with 150 μm of copper (CuSO4). The aqueous two-phase system (ATPS) is a simple, rapid and low cost method for primary extraction and recovery of LiP. A total of 25 systems made from five different molecular weights of polyethylene glycol (PEG)/dipotassium hydrogen phosphate (K2HPO4) were tested. PEG 600 produced the highest top phase purification factor (PFT) of 1.33±0.62 with yield of 72.18±8.50%. The optimization of the ATPS parameters, such as volume ratio VR, pH and crude enzyme loading are the factors controlling the phase partition. Our results showed that significant improvement (PFT of 6.26±2.87 with yield of 87.31±3.14%) of LiP recovery can be achieved by optimized the parameters.
The production, optimization, and characterization of the bioflocculant QZ-7 synthesized by a novel Bacillus salmalaya strain 139SI isolated from a private farm soil in Selangor, Malaysia, are reported. The flocculating activity of bioflocculant QZ-7 present in the selected strain was found to be 83.3%. The optimal culture for flocculant production was achieved after cultivation at 35.5 °C for 72 h at pH 7 ± 0.2, with an inoculum size of 5% (v/v) and sucrose and yeast extract as carbon and nitrogen sources. The maximum flocculating activity was found to be 92.6%. Chemical analysis revealed that the pure bioflocculant consisted of 79.08% carbohydrates and 15.4% proteins. The average molecular weight of the bioflocculant was calculated to be 5.13 × 10⁵ Da. Infrared spectrometric analysis showed the presence of carboxyl (COO-), hydroxyl (-OH), and amino (-NH₂) groups, polysaccharides and proteins. The bioflocculant QZ-7 exhibited a wide pH stability range from 4 to 7, with a flocculation activity of 85% at pH 7 ± 0.2. In addition, QZ-7 was thermally stable and retained more than 80% of its flocculating activity after being heated at 80 °C for 30 min. SEM analysis revealed that QZ-7 exhibited a clear crystalline brick-shaped structure. After treating wastewater, the bioflocculant QZ-7 showed significant flocculation performance with a COD removal efficiency of 93%, whereas a BOD removal efficiency of 92.4% was observed in the B. salmalaya strain 139SI. These values indicate the promising applications of the bioflocculant QZ-7 in wastewater treatment.
Reports of pharmaceuticals exist in surface water and drinking water around the world, indicate they are ineffectively remove from water and wastewater using conventional treatment technologies. The potential of adverse effect of these pharmaceuticals on public health and aquatic life, also their continuos accumulation have raised the development of water treatment technologies. Hybrid treatment processes like membrane filtration and advance oxidation processes (AOPs) are likely to give rise to efficient simultaneous degradation and separation mechanisms. Conventional membrane filtration techniques can remove the majority of contaminants, but the smallest, undegraded, and stabilized pharmaceutical wastes persist in the treated water. After some 20 years, researchers have recognized the important role of AOPs in the treatment of pharmaceutical wastewater because these technologies are capable of oxidizing recalcitrant, toxic, and non-biodigradable compounds into numerous by-products and finally, inert end-products via the intermediacy of hydroxyl and other radicals. Evidently, membranes are subjected to the fouling phenomenon by the contaminants in wastewater, hence resulting in a reduction of clean water flux and increase in energy demand. In such situations, these membrane hybrid AOPs exert a complementary effect in the elimination of membrane fouling, thus enhancing the performance of the membrane. Therefore, in this review, we describe the basic aspects of the removal and transformation of certain pharmaceuticals via membranes and AOPs. In addition, information and evidences on membrane hybrid AOPs in the field of pharmaceutical wastewater treatment is also presented.
Differentially expressed aqueous soluble proteins between Mycobacterium tuberculosis H37Ra and H37Rv were identified. The protein extracts were separated by two-dimensional gel electrophoresis followed by tandem mass spectrometric analysis. Twelve proteins were detected to be differentially expressed significantly between virulent strain H37Rv and attenuated strain H37Ra. The differentially expression of these proteins was validated by a recently isolated clinical virulent strains of M. tuberculosis, TB138. Out of the 12 proteins identified, which consisted of ten upregulated and two downregulated proteins, nine were belonged to intermediate metabolism and respiration protein group, two were in lipid metabolism, and one protein was involved in information pathways and virulence. Among these proteins, two of the upregulated proteins, namely, mmsA and pntAa, showed a consistent expression pattern in both virulent mycobacterium strains. These proteins can serve as potential biomarkers for the intervention treatment of TB.
Groundwater hazard assessments involve many activities dealing with the impacts of pollution on groundwater, such as human health studies and environment modelling. Nitrate contamination is considered a hazard to human health, environment and ecosystem. In groundwater management, the hazard should be assessed before any action can be taken, particularly for groundwater pollution and water quality. Thus, pollution due to the presence of nitrate poses considerable hazard to drinking water, and excessive nutrient loads deteriorate the ecosystem. The parametric IPNOA model is one of the well-known methods used for evaluating nitrate content. However, it cannot predict the effect of soil and land use/land cover (LULC) types on calculations relying on parametric well samples. Therefore, in this study, the parametric model was trained and integrated with the multivariate data-driven model with different levels of information to assess groundwater nitrate contamination in Saladin, Iraq. The IPNOA model was developed with 185 different well samples and contributing parameters. Then, the IPNOA model was integrated with the logistic regression (LR) model to predict the nitrate contamination levels. Geographic information system techniques were also used to assess the spatial prediction of nitrate contamination. High-resolution SPOT-5 satellite images with 5 m spatial resolution were processed by object-based image analysis and support vector machine algorithm to extract LULC. Mapping of potential areas of nitrate contamination was examined using receiver operating characteristic assessment. Results indicated that the optimised LR-IPNOA model was more accurate in determining and analysing the nitrate hazard concentration than the standalone IPNOA model. This method can be easily replicated in other areas that have similar climatic condition. Therefore, stakeholders in planning and environmental decision makers could benefit immensely from the proposed method of this research, which can be potentially used for a sustainable management of urban, industrialised and agricultural sectors.
Palm oil mill effluent contains carcinogenic coloured compounds that are difficult to separate due to their aromatic structure. Though colour treatment using adsorption processes at lower pH (<4) have been reported effectual, due to its acidity the remediated effluent poses an environmental hazard as a result. Thus, the current study focused on achieving decolourization at neutral pH by enhancing the morphology of the coconut shell activated carbon (CSAC) using N₂ as activating-agent with microwave irradiation heating. The microwave pretreated and non-pretreated CSAC were characterized using scanned electron microscopy (SEM), energy dispersive X-ray (EDX) and Brunauer-Emmett-Teller (BET) analysis. A significant modification in the porous structure with a 66.62% increase in the specific surface area was achieved after the pretreatment. The adsorption experimental matrix was developed using the central composite design to investigate the colour adsorption performance under varied pH (6⁻7), dosage (2⁻6 g) and contact time (10⁻100 min). At optimum conditions of neutral pH (7), 3.208 g dosage and contact time of 35 min, the percentage of colour removal was 96.29% with negligible differences compared with the predicted value, 95.855%. The adsorption equilibrium capacity of 1430.1 ADMI × mL/g was attained at the initial colour concentration of 2025 ADMI at 27 °C. The experimental data fitted better with the Freundlich isotherm model with R² 0.9851.
Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
This study investigated chlorinated transformation products (TPs) and their parent micropollutants, aromatic pharmaceuticals and personal care products (PPCPs) in the urban water bodies of two metropolitan cities. Nine PPCPs and 16 TPs were quantitatively or semi-quantitatively determined using isotope dilution techniques and liquid chromatography-tandem mass spectrometry. TPs and most PPCPs were effectively removed by conventional wastewater treatments in a wastewater treatment plant (WWTP). Chlorinated parabens and all PPCPs (at concentrations below 1000 ng/L) were present in the waters receiving treated wastewater. By contrast, the waters receiving untreated wastewater contained higher levels of PPCPs (up to 9400 ng/L) and more species of chlorinated TPs including chlorinated parabens, triclosan, diclofenac, and bisphenol A. The very different chemical profiles between the water bodies of the two cities of similar geographical and climatic properties may be attributed to their respective uses of chemicals and policies of wastewater management. No apparent increase in the number of species or abundances of TPs was observed in either the chlorinated wastewater or the seawater rich in halogens. This is the first study to elucidate and compare the profiles of multiple TPs and their parent PPCPs in the water bodies of coastal cities from tropical islands. Our findings suggest that chlorinated derivatives of bisphenol A, diclofenac, triclosan, and parabens in the surface water originate from sources other than wastewater disinfection or marine chlorination. Although further studies are needed to identify the origins, conventional wastewater treatments may protect natural water bodies against contamination by those chlorinated substances.
Hydrazine is an intermediate product of the anaerobic ammonium oxidation (Anammox) process where both ammonium and nitrite in wastewater are converted to nitrogen gas by bacteria. In this study the effect of external hydrazine addition (5, 10, 15, and 20 mg/L) on the start-up period of the Anammox process was studied using sequencing batch reactors (SBRs). The SBR with an addition of 10 mg/L hydrazine took only 7 weeks to stabilize and achieve the maximum removal of ammonium and nitrite, whereas the SBR without the addition of hydrazine took 12 weeks. The amount of Heme C extracted from the biomass indicated that externally added hydrazine accelerated the growth of Anammox bacteria and reduced the release of nitrous oxide gas from the reactors.
A green regenerated superabsorbent hydrogel was fabricated with mixtures of dissolved oil palm empty fruit bunch (EFB) cellulose and sodium carboxymethylcellulose (NaCMC) in NaOH/urea system. The formation of hydrogel was aided with epichlorohydrin (ECH) as a crosslinker. The resultant regenerated hydrogel was able to swell >80,000% depending on the NaCMC concentrations. The hydrogel absorbed water rapidly upon exposure to water up to 48 h and gradually declined after 72 h. The crosslinked of covalent bond of COC between dissolved EFB cellulose (EFBC) with NaCMC was confirmed with Attenuated total reflectance Fourier transform infrared (ATR-FT-IR) spectroscopy. Crystallinity and thermal stability of the hydrogel samples were depended on the concentrations of NaCMC, crosslinking, and swelling process. The strength and stability of crosslinked network was studied by examining the gel fraction of hydrogel. This study explored the swelling ability and probable influenced factors towards physical and chemical properties of hydrogel.
Chitosan with abundant functional groups is regarded as important ingredients for preparing aerogel materials in life science. The biocompatibility and biodegradability of chitosan aerogels, coupled to the variety of chemical functionalities they include, result in them promising carriers for drug delivery. Moreover, chitosan aerogels as drug delivery vehicles can offer improved drug bioavailability and drug loading capacity due to their highly porous network, considerably large specific surface area and polycationic feature. The major focus of this review lies in preparation methods of chitosan aerogels from acidic aqueous solution and chitosan solution in Ionic Liquids (ILs). In addition, chitosan aerogels as drug delivery carriers are introduced in detail and expected to inspire readers to create new kind of drug delivery system based on chitosan aerogels. Finally, growing points and perspectives of chitosan aerogels in drug delivery system are given.
Dissolved oil palm empty fruit bunch cellulose (EFBC) and sodium carboxymethylcellulose (NaCMC) were chemically crosslinked with epichlorohydrin (ECH) to generate designated hydrogel. After swelling process in distilled water, the swollen hydrogel was frozen and freeze-dried to form cryogel. The swelling phenomenon of hydrogel during the absorption process gave substantial effects on thinning of crosslinked network wall, pore size and volume, steadiness of cryogel skeletal structure, and re-swelling of cryogel. The swelling effects on hydrogel were confirmed via microscopic study using variable pressure scanning electron microscope (VPSEM). From the retrieved VPSEM images, nano-thin crosslinked network wall of 24.31 ± 1.97 nm and interconnected pores were observed. As a result, the amount of water, the swelling degree, and the freeze-drying process indirectly affected the VPSEM images that indicated pore size and volume, formation of interconnected pores, and re-swelling of cryogel. This study determined the intertwined factors that affected both hydrogel and cryogel properties by investigating the swelling phenomenon and its ensuing effects.
Freeze-thaw cycles (FTC) pretreatment was employed before the vacuum freeze-drying of garlic slices, aimed at improving the drying process and the quality of the end product. Cell viability, water status, internal structure, flavor, chemical composition and thermogravimetric of garlic samples were evaluated. The results indicated that FTC pretreatment reduced the drying time (22.22%-33.33%) and the energy consumption (14.25%-15.50%), owing to the water loss, the increase in free water, and the formation of porous structures. The FTC pretreatment improved thermal stability, flavor and chemical composition content of dried products. The antioxidant activity of polysaccharides extracted from FTC pretreated dried products was higher than that of the unpretreated dried product due to the reduction in polysaccharide molecular weight. This research could pave a route for future production of dried garlic slices having good quality by using the FTC pretreatment, with lower energy consumption and shorter drying time.
Oily wastewater, especially water-oil emulsion has become serious environmental issue and received global attention. Chemical demulsifiers are widely used to treat oil-water emulsion, but the toxicity, non-recyclable and non-environmental friendly characteristic of chemical demulsifiers had limited their practical application in oil-water separation. Therefore, it is imperative to develop an efficient, simple, eco-friendly and recyclable demulsifiers for breaking up the emulsions from the oily wastewater. In this study, a magnetic demulsifier, magnetite-reduced graphene oxide (M-rGO) nanocomposites were proposed as a recyclable demulsifier to break up the surfactant stabilized crude oil-in-water (O/W) emulsion. M-rGO nanocomposites were prepared via in situ chemical synthesis by using only one type Fe salt and GO solid as precursor at room temperature. The prepared composites were fully characterized by various techniques. The effect of demulsifier dosage and pH of emulsion on demulsification efficiency (ED) has been studied in detailed. The demulsification mechanism was also proposed in this study. Results showed that M-rGO nanocomposites were able to demulsify crude O/W emulsion. The ED reaches 99.48% when 0.050 wt.% of M-rGO nanocomposites were added to crude O/W emulsion (pH = 4). Besides, M-rGO nanocomposites can be recycled up to 7 cycles without showing a significant change in terms of ED. Thus, M-rGO nanocomposite is a promising demulsifier for surfactant stabilized crude O/W emulsion.
Ectoine is a zwitterionic amino acid derivative that can be naturally sourced from halophilic microorganisms. The increasing demands of ectoine in various industries have urged the researches on the cost-effective approaches on production of ectoine. Ionic liquids-based aqueous biphasic system (ILABS) was applied to recover Halomonas salina ectoine from cells hydrolysate. The 1-butyl-3-methylimidazolium tetrafluoroborate (Bmim)BF4 was used in the ILABS and the recovery efficiency of ILABS to recover ectoine from H. salina cells lysate was evaluated by determining the effects of phase composition; pHs; crude loading and additional neutral salt (NaCl). The hydrophilic ectoine was targeted to partition to the hydrophilic salt-rich phase. A total yield (YB) of 96.32% ± 1.08 of ectoine was obtained with ILABS of phase composition of 20% (w/w) (Bmim)BF4 and 30% (w/w) sulfate salts; system pH of 5.5 when the 20% (w/w) of crude feedstock was applied to the ILABS. There was no significant enhancement on the ectoine recovery efficiency using the ILABS when NaCl was added, therefore the ILABS composition without the additional neutral salt was recommended for the primary purification of ectoine. Partition coefficient (KE) of 30.80 ± 0.42, purity (PE) of 95.82% and enrichment factor (Ef) of 1.92 were recorded with the optimum (Bmim)BF4/sulfate ILABS. These findings have provided an insight on the feasibility of recovery of intracellular biomolecules using the green solvent-based aqueous system in one single-step operation.
Cassava starch has acquired many attentions owing to its ability to be developed as thermoplastic cassava starch (TPCS) where it can be obtained in low cost, making it to be one of alternatives to substitute petroleum-based plastic. An attempt was made to investigate the thermal, mechanical and moisture absorption properties of thermoplastic cassava starch blending with beeswax (TPCS-BW) fabricated using hot moulding compression method in the range of beeswax loading from 0, 2.5, 5 to 10 wt%. Addition of beeswax has significantly reduced tensile strength, elongation and flexural strength while improving tensile modulus and flexural modulus until 5 wt% beeswax. Incorporation of 10 wt% beeswax has successfully produced the lowest value of moisture absorption and water solubility among the bio-composite which might be attributed to the beeswax's hydrophobic properties in improving water barrier of the TPCS-BW bio-composite. Furthermore, the addition of beeswax resulted in the appearance of irregular and rough fractured surface. Meanwhile, fourier transform infrared (FT-IR) spectroscopy presented that incorporation of beeswax in the mixture has considerably improve hydrogen bonding of blends indicating good interaction between starch and beeswax. Hence, beeswax with an appropriate loading value able to improve the functional properties of TPCS-BW bio-composite.
Nanoemulsion is a delivery system used to enhance bioavailability of plant-based compounds across the stratum corneum. Elaeis guineensis leaves are rich source of polyphenolic antioxidants, viz. gallic acid and catechin. The optimal E. guineensis leaves extract water-in-oil nanoemulsion was stable against coalescence, but it was under significant influence of Ostwald ripening over 90 days at 25 °C. The in-vitro permeability revealed a controlled and sustained release of the total phenolic compounds (TPC) of EgLE with a cumulative amount of 1935.0 ± 45.7 µgcm-2 after 8 h. The steady-state flux and permeation coefficient values were 241.9 ± 5.7 µgcm-2 h-1 and 1.15 ± 0.03 cm.h-1, respectively. The kinetic release mechanism for TPC of EgLE was best described by the Korsmeyer-Peppas model due to the highest linearity of R2 = 0.9961, indicating super case II transport mechanism. The in-silico molecular modelling predicted that the aquaporin-3 protein in the stratum corneum bonded preferably to catechin over gallic acid through hydrogen bonds due to the lowest binding energies of - 57.514 kcal/mol and - 8.553 kcal/mol, respectively. Thus, the in-silico study further verified that catechin could improve skin hydration. Therefore, the optimal nanoemulsion could be used topically as moisturizer to enhance skin hydration based on the in-silico prediction.
Sustainable wastewater treatment is one of the biggest issues of the 21st century. Metals such as Zn2+ have been released into the environment due to rapid industrial development. In this study, dried watermelon rind (D-WMR) is used as a low-cost adsorption material to assess natural adsorbents' ability to remove Zn2+ from synthetic wastewater. D-WMR was characterized using scanning electron microscope (SEM) and X-ray fluorescence (XRF). According to the results of the analysis, the D-WMR has two colours, white and black, and a significant concentration of mesoporous silica (83.70%). Moreover, after three hours of contact time in a synthetic solution with 400 mg/L Zn2+ concentration at pH 8 and 30 to 40 °C, the highest adsorption capacity of Zn2+ onto 1.5 g D-WMR adsorbent dose with 150 μm particle size was 25 mg/g. The experimental equilibrium data of Zn2+ onto D-WMR was utilized to compare nonlinear and linear isotherm and kinetics models for parameter determination. The best models for fitting equilibrium data were nonlinear Langmuir and pseudo-second models with lower error functions. Consequently, the potential use of D-WMR as a natural adsorbent for Zn2+ removal was highlighted, and error analysis indicated that nonlinear models best explain the adsorption data.
The Lipase-catalyzed synthesis of glyceryl monocaffeate (GMC) in choline chloride-urea of natural deep eutectic solvent (NADES) media is reported to provide amphiphilic character to caffeic acid (CA). The modification of CA into GMC could potentially increase its solubility and widen the application of CA's biological activities in water and oil-based systems. The high conversion was achieved when the reaction was carried out with the addition of more than 20 %v/v water, at a high molar ratio of glycerol and 40°C. It was found that the lipase-catalyzed transesterification of ethyl caffeate (EC) and glycerol in choline chloride-urea of DES media obeyed ping-pong bi-bi mechanism with Vmax = 10.9 mmol.min-1, KmEC = 126.5 mmol and KmGly = 1842.7 mmol.