Displaying publications 281 - 300 of 344 in total

Abstract:
Sort:
  1. Naidu R, Wahab NA, Yadav M, Kutty MK, Nair S
    Int J Mol Med, 2001 Aug;8(2):193-8.
    PMID: 11445874
    Amplification of int-2/FGF-3 gene was investigated by differential polymerase chain reaction (dPCR) in 440 archival primary breast carcinoma tissues. Of these, 23 were comedo ductal carcinoma in situ (DCIS), 18 were non-comedo DCIS, 41 were comedo DCIS with adjacent invasive ductal carcinomas, 19 were non-comedo DCIS with adjacent invasive ductal carcinomas, 270 were invasive ductal carcinomas, 33 were invasive lobular carcinomas, 21 were colloid carcinomas and 15 were medullary carcinomas. Int-2 was amplified in 22% (96/440) of the primary breast carcinomas. It was shown that int-2 was amplified in 13% (3/23) of the comedo DCIS, 17% (7/41) of the comedo DCIS and 29% (12/41) of the adjacent invasive ductal carcinomas, 26% (71/270) of the invasive ductal carcinomas, 18% (6/33) of the invasive lobular carcinomas, 10% (2/21) of the colloid carcinomas and 13% (2/15) of the medullary carcinomas. In contrast, int-2 was not amplified in non-comedo DCIS and invasive ductal carcinomas with adjacent non-comedo DCIS lesions. A significant association was observed between int-2 amplification in the in situ components and adjacent invasive lesion (P<0.05). All tumors with int-2 amplification in the in situ lesions (7/7) also demonstrated same degree of amplification in the adjacent invasive components. However, 9% (5/53) of the tumors with no amplified int-2 gene in the in situ components showed int-2 amplification in the adjacent invasive lesions. A significant relationship was noted between amplification of int-2 and lymph node metastases (P<0.05) and poorly differentiated tumors (P<0.05) but not with estrogen receptor status (P>0.05) and proliferation index (Ki-67 and PCNA) (P>0.05). In Malaysia, majority of the patients belong to younger age group (<50 years old) but a comparison of the age groups showed that the amplification of int-2 was not statistically associated with patient age (P>0.05). These observations indicate that amplification of int-2 tends to strengthen the view that int-2 may have the potential to be an indicator of poor prognosis regardless of the age of the patient. Moreover, the presence of int-2 amplification in preinvasive, preinvasive and adjacent invasive lesions, and invasive carcinomas suggest that int-2 could be a marker of genetic instability occurring in early and late stages of tumor development.
    Matched MeSH terms: Proto-Oncogene Proteins/genetics*
  2. Haque MA, Jantan I, Harikrishnan H, Ghazalee S
    Phytomedicine, 2019 Feb 15;54:195-205.
    PMID: 30668369 DOI: 10.1016/j.phymed.2018.09.183
    BACKGROUND: Zingiber zerumbet rhizome has been used as spices and in traditional medicine to heal various immune-inflammatory related ailments. Although the plant was reported to have potent anti-inflammatory and immunosuppressive properties by several studies, the molecular mechanisms underlying the effects have not been well justified.

    PURPOSE: The study was carried out to investigate the molecular mechanisms underlying the anti-inflammatory properties of the standardized 80% ethanol extract of Z. zerumbet through its effect on mitogen-activated protein kinase (MyD88)-dependent nuclear factor-kappa B (NF-кB), mitogen activated protein kinase (MAPK) and phosphatidylinositol 3-kinase/Akt (PI3K-Akt) signaling pathways in lipopolysaccharide (LPS)-induced U937 human macrophages.

    METHODS: Standardization of the 80% ethanol extract of Z. zerumbet was performed by using a validated reversed-phase HPLC method, while LC-MS/MS was used to profile the secondary metabolites. The release of pro-inflammatory markers, tumor necrosis factor (TNF)-α, interleukin (IL)-1β and prostaglandin E2 (PGE2) was evaluated by enzyme-linked immunosorbent assay (ELISA), while the Western blot technique was executed to elucidate the expression of mediators linked to MyD88-dependent respective signaling pathways. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) assay was carried out to quantify the relative gene expression of cyclooxygenase (COX)-2 and pro-inflammatory mediators at the transcriptional level.

    RESULTS: The quantitative and qualitative analyses of Z. zerumbet extract showed the presence of several compounds including the major chemical marker zerumbone. Z. zerumbet extract suppressed the release of pro-inflammatory mediators, COX-2 protein expression and downregulated the mRNA expression of pro-inflammatory markers. Z. zerumbet-treatment also blocked NF-κB activation by preventing the phosphorylation of IKKα/β and NF-κB (p65) as well as the phosphorylation and degradation of IκBα. Z. zerumbet extract concentration-dependently inhibited the phosphorylation of respective MAPKs (JNK, ERK, and p38) as well as Akt. Correspondingly, Z. zerumbet extract suppressed the upstream signaling adaptor molecules, TLR4 and MyD88 prerequisite for the NF-κB, MAPKs, and PI3K-Akt activation.

    CONCLUSION: The findings suggest that Z. zerumbet has impressive role in suppressing inflammation and related immune disorders by inhibition of various pro-inflammatory markers through the imperative MyD88-dependent NF-κB, MAPKs, and PI3K-Akt activation.

    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  3. Vockerodt M, Vrzalikova K, Ibrahim M, Nagy E, Margielewska S, Hollows R, et al.
    J Pathol, 2019 06;248(2):142-154.
    PMID: 30666658 DOI: 10.1002/path.5237
    The Epstein-Barr virus (EBV) is found almost exclusively in the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL), yet its contribution to this tumour remains poorly understood. We have focused on the EBV-encoded latent membrane protein-1 (LMP1), a constitutively activated CD40 homologue expressed in almost all EBV-positive DLBCLs and which can disrupt germinal centre (GC) formation and drive lymphomagenesis in mice. Comparison of the transcriptional changes that follow LMP1 expression with those that follow transient CD40 signalling in human GC B cells enabled us to define pathogenic targets of LMP1 aberrantly expressed in ABC-DLBCL. These included the down-regulation of S1PR2, a sphingosine-1-phosphate (S1P) receptor that is transcriptionally down-regulated in ABC-DLBCL, and when genetically ablated leads to DLBCL in mice. Consistent with this, we found that LMP1-expressing primary ABC-DLBCLs were significantly more likely to lack S1PR2 expression than were LMP1-negative tumours. Furthermore, we showed that the down-regulation of S1PR2 by LMP1 drives a signalling loop leading to constitutive activation of the phosphatidylinositol-3-kinase (PI3-K) pathway. Finally, core LMP1-PI3-K targets were enriched for lymphoma-related transcription factors and genes associated with shorter overall survival in patients with ABC-DLBCL. Our data identify a novel function for LMP1 in aggressive DLBCL. Copyright © 2019 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  4. Hosseinzadeh A, Bahrampour Juybari K, Kamarul T, Sharifi AM
    J Physiol Biochem, 2019 Jun;75(2):153-162.
    PMID: 30796627 DOI: 10.1007/s13105-019-00666-8
    The high glucose concentration is able to disturb chondrocyte homeostasis and contribute to OA pathogenesis. This study was designed to investigate the protective effects of atorvastatin (ATO) on high glucose (HG)-mediated oxidative stress and mitochondrial apoptosis in C28I2 human chondrocytes. The protective effect of ATO (0.01 and 0.1 μM) on HG (75 mM)-induced oxidative stress and apoptosis was evaluated in C28I2 cells. The effects of ATO on HG-induced intracellular ROS production and lipid peroxidation were detected and the protein expression levels of Bax, Bcl-2, caspase-3, total and phosphorylated JNK and P38 MAPKs were analyzed by Western blotting. The mRNA expression levels of antioxidant enzymes including heme oxygenase-1, NAD(P)H quinine oxidoreductase, glutathione S-transferase-P1, catalase, superoxide dismutase-1, glutathione peroxidase-1, -3, -4 were evaluated by reverse transcription-polymerase chain reaction. Pretreatment with ATO remarkably increased the gene expression levels of antioxidant enzymes and reduced HG-induced elevation of ROS, lipid peroxidation, Bax/Bcl-2 ratio, caspase-3 activation, and JNK and P38 phosphorylation. Atorvastatin could considerably reduce HG-induced oxidative stress and mitochondrial apoptosis through increasing the expression of antioxidant enzymes. Atorvastatin may be considered as a promising agent to prevent high glucose-induced cartilage degradation in OA patients.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/metabolism
  5. Abdulamir AS, Hafidh RR, Abubakar F, Abbas KA
    BMC Immunol, 2008;9:73.
    PMID: 19087256 DOI: 10.1186/1471-2172-9-73
    BACKGROUND: Asthma is a complicated network of inflammatory reactions. It is classified into mild, moderate, and severe persistent asthma. The success of asthma therapy relies much on understanding the underlying mechanisms of inflammation at each stage of asthma severity. The aim of this study was to explore the differences in apoptotic potential, CD4/CD8 ratio, memory compartment, and T- helper (Th) 1 and 2 profile of peripheral blood lymphocytes (PBL) in patients with mild intermittent asthma and severe persistent asthma during exacerbation periods.
    RESULTS: Four research lines were investigated and compared among mild asthmatics, severe asthmatics, and healthy groups by applying immunocytochemical staining of PBL. Antiapoptotic and proapoptotic proteins with Bcl-2/Bax ratio, CD4, CD8 markers with CD4+/CD8+ ratio, CD45RO+, CD45RA+ markers with memory/naive ratio (CD45RO+/CD45RA+). Th2/Th1 cytokines balance represented by IL-4/IFN-gamma ratio was measured by enzyme-linked immunosorbent assay (ELISA) for in vitro PBL cytokine synthesis. It was found that Bcl-2/Bax ratio was higher in severe than in mild asthmatics which in turn was higher than in healthy group. And memory/naive ratio of PBL was higher in severe than in mild asthmatics. Moreover, memory cells, CD45RO+ and CD45RO+/CD45RA+ ratio were correlated directly with Bcl-2/Bax, in severe and mild asthma patients. In contrast, CD4+/CD8+ ratio was not changed significantly among healthy group, mild and severe asthmatics. However, CD8+ cells were correlated directly with memory cells, CD45RO+, in severe asthmatics only. Interestingly, the dominant profile of cytokines appeared to change from T helper 2 (Th2) in mild asthmatics to T helper 1 (Th1) in severe asthmatics where the lowest in vitro IL-4/IFN-gamma ratio and highest IFN-gamma were found.
    CONCLUSION: It was concluded that the underlying mechanisms of inflammation might vary greatly with asthma stage of severity. Mild intermittent asthma is mainly Th2 allergen-oriented reaction during exacerbations with good level of apoptosis making the inflammation as self-limiting, while in severe persistent asthma, the inflammatory reaction mediated mainly by Th1 cytokines with progressive loss of apoptosis leading to longer exacerbations, largely expanded memory cells, CD45RO+, leading to persistent baseline inflammation.
    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/biosynthesis
  6. Zhang XC, Wang J, Shao GG, Wang Q, Qu X, Wang B, et al.
    Nat Commun, 2019 04 16;10(1):1772.
    PMID: 30992440 DOI: 10.1038/s41467-019-09762-1
    Deep understanding of the genomic and immunological differences between Chinese and Western lung cancer patients is of great importance for target therapy selection and development for Chinese patients. Here we report an extensive molecular and immune profiling study of 245 Chinese patients with non-small cell lung cancer. Tumor-infiltrating lymphocyte estimated using immune cell signatures is found to be significantly higher in adenocarcinoma (ADC, 72.5%) compared with squamous cell carcinoma (SQCC, 54.4%). The correlation of genomic alterations with immune signatures reveals that low immune infiltration was associated with EGFR mutations in ADC samples, PI3K and/or WNT pathway activation in SQCC. While KRAS mutations are found to be significantly associated with T cell infiltration in ADC samples. The SQCC patients with high antigen presentation machinery and cytotoxic T cell signature scores are found to have a prolonged overall survival time.
  7. Abu Bakar MH, Cheng KK, Sarmidi MR, Yaakob H, Huri HZ
    Molecules, 2015 May 07;20(5):8242-69.
    PMID: 25961164 DOI: 10.3390/molecules20058242
    Mitochondrial dysfunction and inflammation are widely accepted as key hallmarks of obesity-induced skeletal muscle insulin resistance. The aim of the present study was to evaluate the functional roles of an anti-inflammatory compound, celastrol, in mitochondrial dysfunction and insulin resistance induced by antimycin A (AMA) in human skeletal muscle cells. We found that celastrol treatment improved insulin-stimulated glucose uptake activity of AMA-treated cells, apparently via PI3K/Akt pathways, with significant enhancement of mitochondrial activities. Furthermore, celastrol prevented increased levels of cellular oxidative damage where the production of several pro-inflammatory cytokines in cultures cells was greatly reduced. Celastrol significantly increased protein phosphorylation of insulin signaling cascades with amplified expression of AMPK protein and attenuated NF-κB and PKC θ activation in human skeletal muscle treated with AMA. The improvement of insulin signaling pathways by celastrol was also accompanied by augmented GLUT4 protein expression. Taken together, these results suggest that celastrol may be advocated for use as a potential therapeutic molecule to protect against mitochondrial dysfunction-induced insulin resistance in human skeletal muscle cells.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  8. Khurshid Ahmed NA, Lim SK, Pandian GN, Sugiyama H, Lee CY, Khoo BY, et al.
    Mol Med Rep, 2020 Nov;22(5):3645-3658.
    PMID: 32901880 DOI: 10.3892/mmr.2020.11485
    Eurycoma (E.) longifolia Jack (Tongkat Ali) is a widely applied medicine that has been reported to boost serum testosterone and increase muscle mass. However, its actual biological targets and effects on an in vitro level remain poorly understood. Therefore, the present study aimed to investigate the effects of a standardised E. longifolia extract (F2) on the growth and its associated gene expression profile in mouse Leydig cells. F2, even at lower doses, was found to induce a high level of testosterone by ELISA. The level was as high as the levels induced by eurycomanone and formestane in Leydig cells. However, Leydig cells treated with F2 demonstrated reduced viability, which was likely due to the diminished cell population at the G0/G1 phase and increased cell population arrested at the S phase in the cell cycle, as assessed by MTT assay and flow cytometry, respectively. Cell viability was revived when the treatment time‑point was prolonged to 96 h. Genome‑wide gene analysis by reverse transcription‑quantitative PCR of F2‑treated Leydig cells at 72 h, when the cell growth was not revived, and 96 h, when the cell growth had started to revive, revealed cyclin‑dependent kinase‑like 2 (CDKL2) to be a potential target in regulating the viability of F2‑treated Leydig cells. Functional analysis, as analysed using GeneMANIA Cytoscape program v.3.6.0 (https://genemania.org/), further suggested that CDKL2 could act in concert with Casitas B‑lineage lymphoma and sphingosine kinase 1 interactor‑A‑kinase anchoring protein domain‑containing genes to regulate the viability of F2‑treated Leydig cells. The findings of the present study provide new insights regarding the potential molecular targets associated with the biological effect of E. longifolia extract on cell growth, particularly on the cell cycle, which could aid in enhancing the bioefficacy and reducing the toxicity of this natural product in the future.
    Matched MeSH terms: Proto-Oncogene Proteins c-cbl/genetics
  9. Parker LM, Damanhuri HA, Fletcher SP, Goodchild AK
    Brain Res, 2015 Apr 16;1604:25-34.
    PMID: 25662772 DOI: 10.1016/j.brainres.2015.01.049
    Hypotensive drugs have been used to identify central neurons that mediate compensatory baroreceptor reflex responses. Such drugs also increase blood glucose. Our aim was to identify the neurochemical phenotypes of sympathetic preganglionic neurons (SPN) and adrenal chromaffin cells activated following hydralazine (HDZ; 10mg/kg) administration in rats, and utilize this and SPN target organ destination to ascribe their function as cardiovascular or glucose regulating. Blood glucose was measured and adrenal chromaffin cell activation was assessed using c-Fos immunoreactivity (-ir) and phosphorylation of tyrosine hydroxylase, respectively. The activation and neurochemical phenotype of SPN innervating the adrenal glands and celiac ganglia were determined using the retrograde tracer cholera toxin B subunit, in combination with in situ hybridization and immunohistochemistry. Blood glucose was elevated at multiple time points following HDZ administration but little evidence of chromaffin cell activation was seen suggesting non-adrenal mechanisms contribute to the sustained hyperglycemia. 16±0.1% of T4-T11 SPN contained c-Fos and of these: 24.3±1.4% projected to adrenal glands and 29±5.5% projected to celiac ganglia with the rest innervating other targets. 62.8±1.4% of SPN innervating adrenal glands were activated and 29.9±3.3% expressed PPE mRNA whereas 53.2±8.6% of SPN innervating celiac ganglia were activated and 31.2±8.8% expressed PPE mRNA. CART-ir SPN innervating each target were also activated and did not co-express PPE mRNA. Neurochemical coding reveals that HDZ administration activates both PPE+SPN, whose activity increase glucose mobilization causing hyperglycemia, as well as CART+SPN whose activity drive vasomotor responses mediated by baroreceptor unloading to raise vascular tone and heart rate.
    Matched MeSH terms: Proto-Oncogene Proteins c-fos/metabolism
  10. Shafee N, Kaluz S, Ru N, Stanbridge EJ
    Cancer Lett, 2009 Sep 8;282(1):109-15.
    PMID: 19342157 DOI: 10.1016/j.canlet.2009.03.004
    The phosphatidylinositol 3-kinase/Akt (PI3K) pathway regulates hypoxia-inducible factor (HIF) activity. Higher expression of HIF-1alpha and carbonic anhydrase IX (CAIX), a hypoxia-inducible gene, in HT10806TG fibrosarcoma cells (mutant N-ras allele), compared to derivative MCH603 cells (deleted mutant N-ras allele), correlated with increased PI3K activity. Constitutive activation of the PI3K pathway in MCH603/PI3K(act) cells increased HIF-1alpha but, surprisingly, decreased CAIX levels. The cell-type specific inhibitory effect on CAIX was confirmed at the transcriptional level whereas epigenetic modifications of CA9 were ruled out. In summary, our data do not substantiate the generalization that PI3K upregulation leads to increased HIF activity.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism*
  11. Chowchaikong N, Nilwarangkoon S, Laphookhieo S, Tanunyutthawongse C, Watanapokasin R
    Int J Oncol, 2018 Jun;52(6):2031-2040.
    PMID: 29620273 DOI: 10.3892/ijo.2018.4353
    Colorectal cancer, which is the third most common type of cancer diagnosed in both men and women, is the leading cause of cancer-related deaths worldwide. Cowanin is a pure compound extracted from Garcinia cowa Roxb., a tree species present in Thailand, Malaysia and Myanmar. The crude extract has been demonstrated to have antitumor activity, inflammation induction, antibacterial activity, anti-inflammatory activity and antimalarial activity. In the present study, the effects of cowanin on apoptosis induction and on the apoptosis-related and mitogen-activated protein kinase (MAPK) pathways were investigated in the LoVo human colorectal cancer cell line. The cytotoxicity of cowanin in LoVo cells was determined by MTT assay. Hoechst 33342 and JC‑1 staining were used to determine nuclear morphological changes and mitochondrial membrane potential, respectively. The expression levels of BCL2 apoptosis regulator (Bcl‑2) family, MAPK and AKT serine/threonine kinase 1 (Akt) pathway proteins following cowanin treatment were determined by western blot analysis. The results demonstrated that cowanin inhibited cell proliferation and induced cell death via the apoptosis pathway. Cowanin treatment increased BCL2 associated X (Bax) and decreased Bcl‑2 expression. In addition, cowanin activated caspase‑9, -7 and poly-ADP-ribose-polymerase expression. Furthermore, cowanin decreased the levels of phosphorylated extracellular signal-regulated kinase (p‑ERK), p‑Akt, p‑3‑phosphoinositide‑dependent protein kinase‑1, while it increased p‑p38 expression, thus resulting in the induction of apoptosis. In conclusion, cowanin inhibited cell proliferation and induced apoptosis of LoVo cells via the MAPK and Akt signaling pathways. Notably, inhibition of p38 by using a p38 inhibitor (SB203580) prevented the cowanin-induced apoptosis in LoVo cells. These results suggested that cowanin may be a potential candidate for the treatment of colorectal cancer and provided important information on the molecular mechanisms underlying its antitumor activity.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  12. Phan CW, David P, Wong KH, Naidu M, Sabaratnam V
    PLoS One, 2015;10(11):e0143004.
    PMID: 26565787 DOI: 10.1371/journal.pone.0143004
    Neurodegenerative diseases are linked to neuronal cell death and impairment of neurite outgrowth. An edible mushroom, Pleurotus giganteus was found to stimulate neurite outgrowth in vitro but the chemical constituents and the underlying mechanism is yet to be elucidated. The chemical constituents of P. giganteus (linoleic acid, oleic acid, cinnamic acid, caffeic acid, p-coumaric acid, succinic acid, benzoic acid, and uridine) were tested for neurite outgrowth activity. Uridine (100 μM) was found to increase the percentage of neurite-bearing cells of differentiating neuroblastoma (N2a) cells by 43.1 ± 0.5%, which was 1.8-fold higher than NGF (50 ng/mL)-treated cells. Uridine which was present in P. giganteus (1.80 ± 0.03 g/100g mushroom extract) increased the phosphorylation of extracellular-signal regulated kinases (ERKs) and protein kinase B (Akt). Further, phosphorylation of the mammalian target of rapamycin (mTOR) was also increased. MEK/ERK and PI3K-Akt-mTOR further induced phosphorylation of cAMP-response element binding protein (CREB) and expression of growth associated protein 43 (GAP43); all of which promoted neurite outgrowth of N2a cells. This study demonstrated that P. giganteus may enhance neurite outgrowth and one of the key bioactive molecules responsible for neurite outgrowth is uridine.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  13. Han H, Yang Y, Wu Z, Liu B, Dong L, Deng H, et al.
    Biomed Pharmacother, 2021 Jan;133:110999.
    PMID: 33227710 DOI: 10.1016/j.biopha.2020.110999
    Abnormal angiogenesis is associated with intraocular diseases such as proliferative diabetic retinopathy and neovascular age-related macular degeneration, and current therapies for these eye diseases are not satisfactory. The purpose of this study was to determine whether capilliposide B (CPS-B), a novel oleanane triterpenoid saponin derived from Lysimachia capillipes Hemsl, can inhibit vascular endothelial growth factor (VEGF)-induced angiogenesis signaling events and cellular responses in primary human retinal microvascular endothelial cells (HRECs). Our study revealed that the capilliposide B IC50 for HRECs was 8.5 μM at 72 h and that 1 μM capilliposide B specifically inhibited VEGF-induced activation of VEGFR2 and its downstream signaling enzymes Akt and Erk. In addition, we discovered that this chemical effectively blocked VEGF-stimulated proliferation, migration and tube formation of the HRECs, suggesting that capilliposide B is a promising prophylactic for angiogenesis-associated diseases such as proliferative diabetic retinopathy.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  14. Chok KC, Koh RY, Ng MG, Ng PY, Chye SM
    Molecules, 2021 Aug 20;26(16).
    PMID: 34443626 DOI: 10.3390/molecules26165038
    Even though an increasing number of anticancer treatments have been discovered, the mortality rates of colorectal cancer (CRC) have still been high in the past few years. It has been discovered that melatonin has pro-apoptotic properties and counteracts inflammation, proliferation, angiogenesis, cell invasion, and cell migration. In previous studies, melatonin has been shown to have an anticancer effect in multiple tumors, including CRC, but the underlying mechanisms of melatonin action on CRC have not been fully explored. Thus, in this study, we investigated the role of autophagy pathways in CRC cells treated with melatonin. In vitro CRC cell models, HT-29, SW48, and Caco-2, were treated with melatonin. CRC cell death, oxidative stress, and autophagic vacuoles formation were induced by melatonin in a dose-dependent manner. Several autophagy pathways were examined, including the endoplasmic reticulum (ER) stress, 5'-adenosine monophosphate-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K), serine/threonine-specific protein kinase (Akt), and mammalian target of rapamycin (mTOR) signaling pathways. Our results showed that melatonin significantly induced autophagy via the ER stress pathway in CRC cells. In conclusion, melatonin demonstrated a potential as an anticancer drug for CRC.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  15. Mannan Baig A, Khan NA, Effendi V, Rana Z, Ahmad HR, Abbas F
    Anticancer Drugs, 2017 01;28(1):75-87.
    PMID: 27606721
    Recent reports on acetylcholine muscarinic receptor subtype 3 (CHRM3) have shown its growth-promoting role in prostate cancer. Additional studies report the proliferative effect of the cholinergic agonist carbachol on prostate cancer by its agonistic action on CHRM3. This study shows that the type 1 acetylcholine muscarinic receptor (CHRM1) contributes toward the proliferation and growth of prostate cancer. We used growth and cytotoxic assays, the prostate cancer microarray database and CHRM downstream pathways' homology of CHRM subtypes to uncover multiple signals leading to the growth of prostate cancer. Growth assays showed that pilocarpine stimulates the proliferation of prostate cancer. Moreover, it shows that carbachol exerts an additional agonistic action on nicotinic cholinergic receptor of prostate cancer cells that can be blocked by tubocurarine. With the use of selective CHRM1 antagonists such as pirenzepine and dicyclomine, a considerable inhibition of proliferation of prostate cancer cell lines was observed in dose ranging from 15-60 µg/ml of dicyclomine. The microarray database of prostate cancer shows a dominant expression of CHRM1 in prostate cancer compared with other cholinergic subtypes. The bioinformatics of prostate cancer and CHRM pathways show that the downstream signalling include PIP3-AKT-CaM-mediated growth in LNCaP and PC3 cells. Our study suggests that antagonism of CHRM1 may be a potential therapeutic target against prostate cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  16. Mohd Fauzi F, John CM, Karunanidhi A, Mussa HY, Ramasamy R, Adam A, et al.
    J Ethnopharmacol, 2017 Feb 02;197:61-72.
    PMID: 27452659 DOI: 10.1016/j.jep.2016.07.058
    ETHNOPHARMACOLOGICAL RELEVANCE: Cassia auriculata (CA) is used as an antidiabetic therapy in Ayurvedic and Siddha practice. This study aimed to understand the mode-of-action of CA via combined cheminformatics and in vivo biological analysis. In particular, the effect of 10 polyphenolic constituents of CA in modulating insulin and immunoprotective pathways were studied.

    MATERIALS AND METHODS: In silico target prediction was first employed to predict the probability of the polyphenols interacting with key protein targets related to insulin signalling, based on a model trained on known bioactivity data and chemical similarity considerations. Next, CA was investigated in in vivo studies where induced type 2 diabetic rats were treated with CA for 28 days and the expression levels of genes regulating insulin signalling pathway, glucose transporters of hepatic (GLUT2) and muscular (GLUT4) tissue, insulin receptor substrate (IRS), phosphorylated insulin receptor (AKT), gluconeogenesis (G6PC and PCK-1), along with inflammatory mediators genes (NF-κB, IL-6, IFN-γ and TNF-α) and peroxisome proliferators-activated receptor gamma (PPAR-γ) were determined by qPCR.

    RESULTS: In silico analysis shows that several of the top 20 enriched targets predicted for the constituents of CA are involved in insulin signalling pathways e.g. PTPN1, PCK-α, AKT2, PI3K-γ. Some of the predictions were supported by scientific literature such as the prediction of PI3K for epigallocatechin gallate. Based on the in silico and in vivo findings, we hypothesized that CA may enhance glucose uptake and glucose transporter expressions via the IRS signalling pathway. This is based on AKT2 and PI3K-γ being listed in the top 20 enriched targets. In vivo analysis shows significant increase in the expression of IRS, AKT, GLUT2 and GLUT4. CA may also affect the PPAR-γ signalling pathway. This is based on the CA-treated groups showing significant activation of PPAR-γ in the liver compared to control. PPAR-γ was predicted by the in silico target prediction with high normalisation rate although it was not in the top 20 most enriched targets. CA may also be involved in the gluconeogenesis and glycogenolysis in the liver based on the downregulation of G6PC and PCK-1 genes seen in CA-treated groups. In addition, CA-treated groups also showed decreased cholesterol, triglyceride, glucose, CRP and Hb1Ac levels, and increased insulin and C-peptide levels. These findings demonstrate the insulin secretagogue and sensitizer effect of CA.

    CONCLUSION: Based on both an in silico and in vivo analysis, we propose here that CA mediates glucose/lipid metabolism via the PI3K signalling pathway, and influence AKT thereby causing insulin secretion and insulin sensitivity in peripheral tissues. CA enhances glucose uptake and expression of glucose transporters in particular via the upregulation of GLUT2 and GLUT4. Thus, based on its ability to modulate immunometabolic pathways, CA appears as an attractive long term therapy for T2DM even at relatively low doses.

    Matched MeSH terms: Proto-Oncogene Proteins c-akt/metabolism
  17. Masre SF, Rath N, Olson MF, Greenhalgh DA
    Oncogene, 2017 May 04;36(18):2529-2542.
    PMID: 27991921 DOI: 10.1038/onc.2016.402
    To study ROCK2 activation in carcinogenesis, mice expressing 4-hydroxytamoxifen (4HT)-activated ROCK2 (K14.ROCK(er)) were crossed with mice expressing epidermal-activated ras(Ha) (HK1.ras(1205)). At 8 weeks, 4HT-treated K14.ROCK(er)/HK1.ras(1205) cohorts exhibited papillomas similar to HK1.ras(1205) controls; however, K14.ROCK(er)/HK1.ras(1205) histotypes comprised a mixed papilloma/well-differentiated squamous cell carcinoma (wdSCC), exhibiting p53 loss, increased proliferation and novel NF-κB expression. By 12 weeks, K14.ROCK(er)/HK1.ras(1205) wdSCCs exhibited increased NF-κB and novel tenascin C, indicative of elevated rigidity; yet despite continued ROCK2 activities/p-Mypt1 inactivation, progression to SCC required loss of compensatory p21 expression. K14.ROCK(er)/HK1.ras(1205) papillomatogenesis also required a wound promotion stimulus, confirmed by breeding K14.ROCK(er) into promotion-insensitive HK1.ras(1276) mice, suggesting a permissive K14.ROCK(er)/HK1.ras(1205) papilloma context (wound-promoted/NF-κB(+)/p53(-)/p21(+)) preceded K14.ROCK(er)-mediated (p-Mypt1/tenascin C/rigidity) malignant conversion. Malignancy depended on ROCK(er)/p-Mypt1 expression, as cessation of 4HT treatment induced disorganized tissue architecture and p21-associated differentiation in wdSCCs; yet tenascin C retention in connective tissue extracellular matrix suggests the rigidity laid down for conversion persists. Novel papilloma outgrowths appeared expressing intense, basal layer p21 that confined endogenous ROCK2/p-Mypt1/NF-κB to supra-basal layers, and was paralleled by restored basal layer p53. In later SCCs, 4HT cessation became irrelevant as endogenous ROCK2 expression increased, driving progression via p21 loss, elevated NF-κB expression and tenascin C-associated rigidity, with p-Mypt1 inactivation/actinomyosin-mediated contractility to facilitate invasion. However, p21-associated inhibition of early-stage malignant progression and the intense expression in papilloma outgrowths, identifies a novel, significant antagonism between p21 and ras(Ha)/ROCK2/NF-κB signalling in skin carcinogenesis. Collectively, these data show that ROCK2 activation induces malignancy in ras(Ha)-initiated/promoted papillomas in the context of p53 loss and novel NF-κB expression, whereas increased tissue rigidity and cell motility/contractility help mediate tumour progression.
  18. Cheng AL, Cornelio G, Shen L, Price T, Yang TS, Chung IJ, et al.
    Clin Colorectal Cancer, 2017 06;16(2):e73-e88.
    PMID: 27780749 DOI: 10.1016/j.clcc.2016.08.005
    BACKGROUND: In patients with KRAS wild-type (wt) metastatic colorectal cancer (mCRC), outcomes with first-line chemotherapies are improved by adding weekly cetuximab. The APEC study investigated first-line once-every-2-weeks cetuximab plus chemotherapy for patients with KRAS wt mCRC; additional biomarker subgroups were also analyzed.

    PATIENTS AND METHODS: APEC was a nonrandomized phase 2 trial conducted in the Asia-Pacific region. Patients (n = 289) received once-every-2-weeks cetuximab with investigator's choice of chemotherapy (FOLFOX or FOLFIRI). The primary end point was best confirmed overall response rate (BORR); progression-free survival (PFS) and overall survival (OS) were secondary end points. Early tumor shrinkage (ETS) and depth of response (DpR) were also evaluated.

    RESULTS: In the KRAS wt population, BORR was 58.8%, median PFS 11.1 months, and median OS 26.8 months. Expanded RAS mutational analysis revealed that patients with RAS wt mCRC had better outcomes (BORR = 64.7%; median PFS = 13.0 months; median OS = 28.4 months). The data suggest that ETS and DpR may be associated with survival outcomes in the RAS wt population. Although this study was not designed to formally assess differences in outcome between treatment subgroups, efficacy results appeared similar for patients treated with FOLFOX and FOLFIRI. There were no new safety findings; in particular, grade 3/4 skin reactions were within clinical expectations.

    CONCLUSION: The observed activity and safety profile is similar to that reported in prior first-line pivotal studies involving weekly cetuximab, suggesting once-every-2-weeks cetuximab is effective and tolerable as first-line therapy and may represent an alternative to weekly administration.

  19. Ong YS, Saiful Yazan L, Ng WK, Abdullah R, Mustapha NM, Sapuan S, et al.
    Nanomedicine (Lond), 2018 07;13(13):1567-1582.
    PMID: 30028248 DOI: 10.2217/nnm-2017-0322
    AIM: To investigate the enhancement of anticancer activity of thymoquinone (TQ) by the use of nanostructured lipid carrier (NLC) in 4T1 tumor-bearing female BALB/c mice.

    MATERIAL & METHODS: TQ was incorporated into NLC (TQNLC) by using high pressure homogenization. TQNLC and TQ were orally administered to the mice.

    RESULTS & CONCLUSION: TQNLC and TQ are potential chemotherapeutic drugs as they exhibited anticancer activity. The use of NLC as a carrier has enhanced the therapeutic property of TQ by increasing the survival rate of mice. The antimetastasis effect of TQNLC and TQ to the lungs was evidence by downregulation of MMP-2. TQNLC and TQ induced apoptosis via modulation of Bcl-2 and caspase-8 in the intrinsic apoptotic pathway.

    Matched MeSH terms: Proto-Oncogene Proteins c-bcl-2/genetics
  20. Malami I, Abdul AB, Abdullah R, Kassim NK, Rosli R, Yeap SK, et al.
    PLoS One, 2017;12(1):e0170233.
    PMID: 28103302 DOI: 10.1371/journal.pone.0170233
    Uridine-cytidine kinase 2 is an enzyme that is overexpressed in abnormal cell growth and its implication is considered a hallmark of cancer. Due to the selective expression of UCK2 in cancer cells, a selective inhibition of this key enzyme necessitates the discovery of its potential inhibitors for cancer chemotherapy. The present study was carried out to demonstrate the potentials of natural phytochemicals from the rhizome of Alpinia mutica to inhibit UCK2 useful for colorectal cancer. Here, we employed the used of in vitro to investigate the effectiveness of natural UCK2 inhibitors to cause HT-29 cell death. Extracts, flavokawain B, and alpinetin compound from the rhizome of Alpinia mutica was used in the study. The study demonstrated that the expression of UCK2 mRNA were substantially reduced in treated HT-29 cells. In addition, downregulation in expression of 18S ribosomal RNA was also observed in all treated HT-29 cells. This was confirmed by fluorescence imaging to measure the level of expression of 18S ribosomal RNA in live cell images. The study suggests the possibility of MDM2 protein was downregulated and its suppression subsequently activates the expression of p53 during inhibition of UCK2 enzyme. The expression of p53 is directly linked to a blockage of cell cycle progression at G0/G1 phase and upregulates Bax, cytochrome c, and caspase 3 while Bcl2 was deregulated. In this respect, apoptosis induction and DNA fragmentation were observed in treated HT-29 cells. Initial results from in vitro studies have shown the ability of the bioactive compounds of flavokawain B and alpinetin to target UCK2 enzyme specifically, inducing cell cycle arrest and subsequently leading to cancer cell death, possibly through interfering the MDM2-p53 signalling pathway. These phenomena have proven that the bioactive compounds could be useful for future therapeutic use in colon cancer.
    Matched MeSH terms: Proto-Oncogene Proteins c-mdm2/antagonists & inhibitors
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links