Displaying publications 281 - 300 of 342 in total

Abstract:
Sort:
  1. Amari A, Elboughdiri N, Ahmed Said E, Zahmatkesh S, Ni BJ
    J Environ Manage, 2024 Feb;351:119761.
    PMID: 38113785 DOI: 10.1016/j.jenvman.2023.119761
    The practice of aquaculture is associated with the generation of a substantial quantity of effluent. Microalgae must effectively assimilate nitrogen and phosphorus from their surrounding environment for growth. This study modeled the algal biomass film, NO3-N concentration, and pH in the membrane bioreactor using the response surface methodology (RSM) and an artificial neural network (ANN). Furthermore, it was suggested that the optimal condition for each parameter be determined. The results of ANN modeling showed that ANN with a structure of 5-3 and employing the transfer functions tansig-logsig demonstrated the highest level of accuracy. This was evidenced by the obtained values of coefficient (R2) = 0.998, R = 0.999, mean squared error (MAE) = 0.0856, and mean square error (MSE) = 0.143. The ANN model, characterized by a 5-5 structure and employing the tansig-logsig transfer function, demonstrates superior accuracy when predicting the concentration of NO3-N and pH. This is evidenced by the high values of R2 (0.996), R (0.998), MAE (0.00162), and MSE (0.0262). The RSM was afterward employed to maximize the performance of algal film biomass, pH levels, and NO3-N concentrations. The optimal conditions for the algal biomass film were a concentration of 2.884 mg/L and a duration of 6.589 days. Similarly, the most favorable conditions for the NO3-N concentration and pH were 2.984 mg/L and 6.787 days, respectively. Therefore, this research uses non-dominated sorting genetic algorithm II (NSGA II) to find the optimal NO3-N concentration, algal biomass film, and pH for product or process quality. The region has the greatest alkaline pH and lowest NO3-N content.
  2. Yang M, Mohammad Yusoff WF, Mohamed MF, Jiao S, Dai Y
    J Environ Manage, 2024 Feb;351:119798.
    PMID: 38103426 DOI: 10.1016/j.jenvman.2023.119798
    With climate change and urbanization, flood disasters have significantly affected urban development worldwide. In this study, we developed a paradigm to assess flood economic vulnerability and risk at the urban mesoscale, focusing on urban land use. A hydrological simulation was used to evaluate flood hazards through inundation analyses, and a hazard-vulnerability matrix was applied to assess flood risk, enhancing the economic vulnerability assessment by quantifying the differing economic value and flood losses associated with different land types. The case study of Wangchengpo, Changsha, China, found average total economic losses of 126.94 USD/m2, with the highest risk in the settlement core. Residential areas had the highest flood hazard, vulnerability, and losses (61.10% of the total loss); transportation areas accounted for 27.87% of the total economic losses due to their high flooding depth. Despite low inundation, industrial land showed greater economic vulnerability due to higher overall economic value (10.52% of the total). Our findings highlight the influence of land types and industry differences on flood vulnerability and the effectiveness of land-use inclusion in urban-mesoscale analyses of spatial flood characteristics. We identify critical areas with hazard and economic vulnerability for urban land and disaster prevention management and planning, helping to offer targeted flood control strategies to enhance urban resilience.
  3. Kamaraj M, Suresh Babu P, Shyamalagowri S, Pavithra MKS, Aravind J, Kim W, et al.
    J Environ Manage, 2024 Feb;351:119830.
    PMID: 38141340 DOI: 10.1016/j.jenvman.2023.119830
    Cyclodextrin (CD) and its derivatives are receiving attention as a new-generation adsorbent for water pollution treatment due to their external hydrophilic and internal hydrophobic properties. Among types of CD, β-Cyclodextrin (βCD) has been a material of choice with a proven track record for a range of utilities in distinct domains, owing to its unique cage-like structural conformations and inclusion complex-forming ability, especially to mitigate emerging contaminants (ECs). This article outlines βCD composites in developing approaches of their melds and composites for purposes such as membranes for removal of the ECs in aqueous setups have been explored with emphasis on recent trends. Electrospinning has bestowed an entirely different viewpoint on polymeric materials, comprising βCD, in the framework of diverse functions across a multitude of niches. Besides, this article especially discusses βCD polymer composite membrane-based removal of contaminants such as pharmaceutical substances, endocrine disruptors chemicals, and dyes. Finally, in this article, the challenges and future directions of βCD-based adsorbents are discussed, which may shed light on pragmatic commercial applications of βCD polymer composite membranes.
  4. See MS, Musa N, Liew HJ, Harun NO, Rahmah S
    J Environ Manage, 2024 Feb;351:119677.
    PMID: 38042084 DOI: 10.1016/j.jenvman.2023.119677
    Sweet orange Citrus sinensis peel is a phytobiotic agricultural waste with bioactive compounds that have potential functional properties as a growth promoter and immune stimulator. This study aims to evaluate the dietary effects of sweet orange peel (SOP) as a feed additive on growth enhancement of juvenile bagrid catfish Mystus nemurus and their disease resistance ability against Aeromonas hydrophila infection. Four experimental diets were formulated to contain 0 (SOP0, control), 4 (SOP4), 8 (SOP8) and 12 g/kg (SOP12) SOP. After 90 d of the feeding experiment, improvement in weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio were observed in the fish fed with SOP4. While fish survival was not significantly affected, hepatosomatic and viscerosomatic indices were significantly higher in fish fed with SOP12. Muscle protein was higher in fish fed with SOP4, SOP8, and SOP12 than in control but muscle lipids showed an opposite trend. A 14-d post-challenge test against A. hydrophila revealed no significant effect on the fish survival. Nevertheless, fish fed SOP4 encountered delayed bacterial infection compared to other treatments and fish fed with SOP0 and SOP4 performed numerically better survival. Infected fish showed skin depigmentation, haemorrhagic signs at the abdomen and anus, internal bleeding, and stomach and intestine enlargement. In conclusion, SOP4 could be recommended as a growth promoter while slightly delaying A. hydrophila infection in M. nemurus.
  5. Subramaniam Y, Loganathan N, Subramaniam T
    J Environ Manage, 2024 Feb;351:119646.
    PMID: 38042078 DOI: 10.1016/j.jenvman.2023.119646
    Governance has become indispensable within the healthcare sector, but previous studies have not explored the potential environmental benefits linked to healthcare governance. Thus, this study focuses on the role of governance in moderating healthcare and environmental emissions in 159 low, lower-middle, upper-middle and high-income countries. To do so, cross-sectional autoregressive distributed lag (CS-ARDL) techniques were applied using panel data from 1999 to 2021, followed by the computation of threshold and marginal effect of governance on healthcare and environmental emissions nexus. Findings revealed that, with the exception of high-income countries in the short run, governance has an insignificant impact on healthcare and emissions nexus in low-, lower-middle and upper-middle-income countries. Surprisingly, the findings imply that, in the long run, countries with greater levels of governance are likely to have lesser environmental impacts related to healthcare. There was also evidence indicating that low, lower-middle, upper-middle and high-income countries must reach a certain level of governance before realising the benefits of healthcare. Therefore, to achieve lower environmental impacts from healthcare, countries must promote effective governance policies that can incentivise and enforce sustainable practices and technologies in the healthcare sector.
  6. Lun YE, Abdullah SRS, Hasan HA, Othman AR, Kurniawan SB, Imron MF, et al.
    J Environ Manage, 2022 Mar 15;311:114832.
    PMID: 35303596 DOI: 10.1016/j.jenvman.2022.114832
    Native emergent and floating plants; local reed grass (Phragmites karka) and water hyacinth (Eichhornia crassipes), respectively, were used to treat textile wastewater using an integrated emergent-floating planted reactor (IEFPR) system at hydraulic retention times (HRTs) of 8, 14, and 19 days. Real textile effluent having characteristics of 1686.3 ADMI for colour, 535 mg/L for total suspended solid (TSS), 647.7 mg/L for chemical oxygen demand (COD) and 124 mg/L for biochemical oxygen demand (BOD) was used throughout this study. The IEFPR system experienced maximum removal of colour (94.8%, HRT 14 days, day 3), TSS (92.7%, HRT 19 days, day 7), and COD (96.6%, HRT 8 days, day 5) at different HRT and exposure time. The process conditions (HRT and exposure time) were optimized for maximum colour, TSS and COD removal from textile effluent by employing response surface methodology (RSM). The optimization has resulted 100% removal of colour, 87% removal of TSS and 100% removal of COD at HRT of 8 days and exposure time of 5 days, with 0.984 desirability. The integrated plant-assisted treatment system showed reliable performance in treating textile wastewater at optimum operational conditions to improve effluent quality before disposal into water bodies or being recycled into the process. The potential of phytoremediator (produced plant biomass) to be utilized as resources for bioenergy or to be converted into value added products (adsorbent or biochar) provides an alternative to management strategy for better environmental sustainability.
  7. Kim MJ, Hall CM
    J Environ Manage, 2022 Mar 11;311:114868.
    PMID: 35287083 DOI: 10.1016/j.jenvman.2022.114868
    Active transport (walking and biking) has significant environmental, health, and social benefits. Despite the importance of active transport, theoretically framed research has not sufficiently considered what makes consumers walk or bike based on activity types, particularly in an Asian context. This is an important topic as it helps provides a basis for better targeted marketing and promotion to encourage greater public engagement with active transport. To fill this knowledge gap, this work applied the value-attitude-behavior (VAB) theory to understand walkers and bikers' behaviors in comparing tourism, leisure, and work activity. Results indicate that value on attitude has the greatest influence, followed by personal, and then social norm. Behavior for active transport is significantly influenced by personal norm, followed by attitude and social norm. Interestingly, from the three types of activities, the tourism group has the strongest relationship of value and attitude and the highest prediction for attitude and behavior.
  8. Khan MSJ, Mohd Sidek L, Kamal T, Khan SB, Basri H, Zawawi MH, et al.
    J Environ Manage, 2024 Feb 19;354:120228.
    PMID: 38377746 DOI: 10.1016/j.jenvman.2024.120228
    The effective reduction of hazardous organic pollutants in wastewater is a pressing global concern, necessitating the development of advanced treatment technologies. Pollutants such as nitrophenols and dyes, which pose significant risks to both human and aquatic health, making their reduction particularly crucial. Despite the existence of various methods to eliminate these pollutants, they are not without limitations. The utilization of nanomaterials as catalysts for chemical reduction exhibits a promising alternative owing to their distinguished catalytic activity and substantial surface area. For catalytically reducing the pollutants NaBH4 has been utilized as a useful source for it because it reduces the pollutants quiet efficiently and it also releases hydrogen gas as well which can be used as a source of energy. This paper provides a comprehensive review of recent research on different types of nanomaterials that function as catalysts to reduce organic pollutants and also generating hydrogen from NaBH4 methanolysis while also evaluating the positive and negative aspects of nanocatalyst. Additionally, this paper examines the features effecting the process and the mechanism of catalysis. The comparison of different catalysts is based on size of catalyst, reaction time, rate of reaction, hydrogen generation rate, activation energy, and durability. The information obtained from this paper can be used to steer the development of new catalysts for reducing organic pollutants and generation hydrogen by NaBH4 methanolysis.
  9. Kostakis I
    J Environ Manage, 2024 Feb 21;354:120398.
    PMID: 38387356 DOI: 10.1016/j.jenvman.2024.120398
    This study investigates the relationship between economic growth, renewable energy consumption, financial openness, and environmental degradation in selected ASEAN (Association of Southeast Asian Nations) countries (Cambodia, Indonesia, Malaysia, Philippines, Singapore, Thailand, and Vietnam) from 1996 to 2018. We aim to analyze how macroeconomic situation, energy-related factors, and financial determinants contribute to environmental deprivation in selected countries whose growth has recently been substantial. To address this issue, we employ second-generation panel data regression models and quantiles with fixed-effects estimators. Initially, the cointegration analysis supports a long-run association between the variables of our interest. Empirical findings confirm the environmental Kuznets curve hypothesis, but it seems valid only for Singapore. Moreover, results highlight the ecological role of renewable energy for ASEAN countries to achieve Sustainable Development Goals, such as transitioning to a low-carbon economy and reducing air pollution. On the contrary, financial openness is a cause that positively influences CO2 emissions. This research offers practical policy recommendations for many countries, including the ASEAN economies, to attain sustainable development.
  10. Adeoye JB, Tan YH, Lau SY, Tan YY, Chiong T, Mubarak NM, et al.
    J Environ Manage, 2024 Feb 27;353:120170.
    PMID: 38308991 DOI: 10.1016/j.jenvman.2024.120170
    The stress of pharmaceutical and personal care products (PPCPs) discharging to water bodies and the environment due to increased industrialization has reduced the availability of clean water. This poses a potential health hazard to animals and human life because water contamination is a great issue to the climate, plants, humans, and aquatic habitats. Pharmaceutical compounds are quantified in concentrations ranging from ng/Lto μg/L in aquatic environments worldwide. According to (Alsubih et al., 2022), the concentrations of carbamazepine, sulfamethoxazole, Lutvastatin, ciprofloxacin, and lorazepam were 616-906 ng/L, 16,532-21635 ng/L, 694-2068 ng/L, 734-1178 ng/L, and 2742-3775 ng/L respectively. Protecting and preserving our environment must be well-driven by all sectors to sustain development. Various methods have been utilized to eliminate the emerging pollutants, such as adsorption and biological and advanced oxidation processes. These methods have their benefits and drawbacks in the removal of pharmaceuticals. Successful wastewater treatment can save the water bodies; integrating green initiatives into the main purposes of actor firms, combined with continually periodic awareness of the current and potential implications of environmental/water pollution, will play a major role in water conservation. This article reviews key publications on the adsorption, biological, and advanced oxidation processes used to remove pharmaceutical products from the aquatic environment. It also sheds light on the pharmaceutical adsorption capability of adsorption, biological and advanced oxidation methods, and their efficacy in pharmaceutical concentration removal. A research gap has been identified for researchers to explore in order to eliminate the problem associated with pharmaceutical wastes. Therefore, future study should focus on combining advanced oxidation and adsorption processes for an excellent way to eliminate pharmaceutical products, even at low concentrations. Biological processes should focus on ideal circumstances and microbial processes that enable the simultaneous removal of pharmaceutical compounds and the effects of diverse environments on removal efficiency.
  11. Amjad M, Mohyuddin A, Ulfat W, Goh HH, Dzarfan Othman MH, Kurniawan TA
    J Environ Manage, 2024 Feb 27;353:120287.
    PMID: 38335595 DOI: 10.1016/j.jenvman.2024.120287
    Textile wastewater laden with dyes has emerged as a source of water pollution. This possesses a challenge in its effective treatment using a single functional material. In respond to this technological constraint, this work presents multifunctional cotton fabrics (CFs) within a single, streamlined preparation process. This approach utilizes the adherence of Ag NPs (nanoparticles) using Si binder on the surface of CFs, resulting in Ag-coated CFs through a pad dry method. The prepared samples were characterized using scanning electron microscope-energy dispersive X-ray electroscopy (SEM-EDS), thermal gravimetric analysis (TGA), Fourier transformation infrared (FT-IR). It was found that the FT-IR spectra of Ag NPs-coated CFs had peaks appear at 3400, 2900, and 1200 cm-1, implying the stretching vibrations of O-H, C-H, and C-O, respectively. Based on the EDX analysis, the presence of C, O, and Ag related to the coated CFs were detected. After coating the CFs with varying concentrations of Ag NPs (1%, 2% and 3% (w/w)), they were used to remove dyes. Under the same concentration of 10 mg/L and optimized pH 7.5 and 2 h of reaction time, 3% (w/w) Ag-coated CFs exhibited a substantial MB degradation of 98 %, while removing 95% of methyl orange, 85% of rhodamine B, and 96% of Congo red, respectively, following 2 h of Vis exposure. Ag NPs had a strong absorption at 420 nm with 2.51 eV of energy band gap. Under UV irradiation, electrons excited and produced free radicals that promoted dyes photodegradation. The oxidation by-products included p-dihydroxybenzene and succinic acid. Spent Ag-coated CFs attained 98% of regeneration efficiency. The utilization of Ag-coated CFs as a photocatalyst facilitated treated effluents to meet the required discharge standard of lower than 1 mg/L mandated by national legislation. The integration of multifunctional CFs in the treatment system presents a new option for tackling water pollution due to dyes.
  12. Qutob M, Rafatullah M, Muhammad SA, Alamry KA, Hussein MA
    J Environ Manage, 2024 Feb 27;353:120179.
    PMID: 38295641 DOI: 10.1016/j.jenvman.2024.120179
    Natural soil minerals often contain numerous impurities, resulting in comparatively lower catalytic activity. Tropical soils are viewed as poor from soil organic matter, cations, and anions, which are considered the main impurities in the soil that are restricted to utilizing natural minerals as a catalyst. In this regard, the dissolved iron and hematite crystals that presented naturally in tropical soil were evaluated to activate oxidants and degrade pyrene. The optimum results obtained in this study were 73 %, and the rate constant was 0.0553 h-1 under experimental conditions [pyrene] = 300 mg/50 g, pH = 7, T = 55 °C, airflow = 260 mL/min, [Persulfate (PS)] = 1.0 g/L, and humic acid (HA) ( % w/w) = 0.5 %. The soil characterization analysis after the remediation process showed an increase in moieties and cracks of the soil aggregate, and a decline in the iron and aluminium contents. The scavengers test revealed that both SO4•- and O2•- were responsible for the pyrene degradation, while HO• had a minor role in the degradation process. In addition, the monitoring of by-products, degradation pathways, and toxicity assessment were also investigated. This system is considered an efficient, green method, and could provide a step forward to develop low-cost soil remediation for full-scale implementation.
  13. Wang J, Li C, Awasthi MK, Nyambura SM, Zhu Z, Li H, et al.
    J Environ Manage, 2024 Feb 27;353:120182.
    PMID: 38278112 DOI: 10.1016/j.jenvman.2024.120182
    Randomly collected food waste results in inaccurate experimental data with poor reproducibility for composting. This study investigated standard food waste samples as replacements for randomly collected food waste. A response surface methodology was utilised to analyse data from a 28-day compost process optimisation experiment using collected food waste, and the optimal combination of composting parameters was derived. Experiments using different standard food waste samples (high oil and salt, high oil and sugar, balanced diet, and vegetarian) were conducted for 28 days under optimal conditions. The ranking of differences between the standard samples and collected food waste was vegetarian > balanced diet > high oil and sugar > high oil and salt. Statistical analysis indicated t-tests for increased oil and salt samples and collected food waste were not significant, and Cohen's d effect values were minimal. High oil and salt samples can be used as replacements for collected food waste in composting experiments.
  14. Abdul Rahman SNS, Chai YH, Lam MK
    J Environ Manage, 2024 Mar;355:120447.
    PMID: 38460326 DOI: 10.1016/j.jenvman.2024.120447
    This research explicitly investigates the utilization of Chlorella Vulgaris sp. microalgae as a renewable source for lipid production, focusing on its application in bioplastic manufacturing. This study employed the supercritical fluid extraction technique employing supercritical CO2 (sCO2) as a green technology to selectively extract and produce PHA's precursor utilizing CO2 solvent as a cleaner solvent compared to conventional extraction method. The study assessed the effects of three extraction parameters, namely temperature (40-60 °C), pressure (15-35 MPa), and solvent flow rate (4-8 ml/min). The pressure, flowrate, and temperature were found to be the most significant parameters affecting the sCO2 extraction. Through Taguchi optimization, the optimal parameters were determined as 60 °C, 35 MPa, and 4 ml/min with the highest lipid yield of 46.74 wt%; above-average findings were reported. Furthermore, the pretreatment process involved significant effects such as crumpled and exhaustive structure, facilitating the efficient extraction of total lipids from the microalgae matrix. This study investigated the microstructure of microalgae biomatrix before and after extraction using scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Fourier-transform infrared spectroscopy (FTIR) was utilized to assess the potential of the extracted material as a precursor for biodegradable plastic production, with a focus on reduced heavy metal content through inductively coupled plasma-optical emission spectrometry (ICP-OES) analysis. The lipid extracted from Chlorella Vulgaris sp. microalgae was analysed using gas chromatography-mass spectrometry (GC-MS), identifying key constituents, including oleic acid (C18H34O2), n-Hexadecanoic acid (C16H32O2), and octadecanoic acid (C18H36O2), essential for polyhydroxyalkanoate (PHA) formation.
  15. Zhou L, Azam SMF
    J Environ Manage, 2024 Apr;356:120687.
    PMID: 38547821 DOI: 10.1016/j.jenvman.2024.120687
    Based on the panel data of 22 inland provinces in China from 2010 to 2020, this study constructs and measures the level of rural ecological environment in China. The impact of the financial performance of green-listed companies on the rural ecological environment and its moderating and threshold effects are analyzed. The following conclusions are drawn: (1) During 2010-2020, China's rural ecological environment shows a trend of "fluctuating-decreasing-rising" with significant regional non-equilibrium characteristics. (2) The financial performance of green-listed companies has a significantly negative impact on rural ecology. This negative impact has a crucial heterogeneous feature, with a more significant negative impact in areas with a higher rural ecological environment index and less substantial performance in regions with a lower rural ecological environment index. (3) There is a significant positive moderating effect of education level and digitalization on the relationship between the financial performance of green-listed companies on the level of rural ecological development. As moderating variables, the digitalization and education level weakens the negative impact of green-listed companies' performance on the ecological environment. The positive impact of the financial performance of green-listed companies on the development level of the rural ecological environment is more vital in areas with higher per capita education levels and digitalization in rural areas. (4) There is a significant threshold effect on the financial performance of green-listed companies on the level of rural ecological development. When the financial performance of green-listed companies exceeds a particular threshold value, the impact of the financial performance of green-listed companies on the development level of the rural ecological environment is significantly positive. Based on the above findings, this paper puts forward corresponding countermeasure suggestions.
  16. Wang W, Balsalobre-Lorente D, Anwar A, Adebayo TS, Cong PT, Quynh NN, et al.
    J Environ Manage, 2024 Apr;357:120708.
    PMID: 38552512 DOI: 10.1016/j.jenvman.2024.120708
    The recent progress report of Sustainable Development Goals (SDG) 2023 highlighted the extreme reactions of environmental degradation. This report also shows that the current efforts for achieving environmental sustainability (SDG 13) are inadequate and a comprehensive policy agenda is needed. However, the present literature has highlighted several determinants of environmental degradation but the influence of geopolitical risk on environmental quality (EQ) is relatively ignored. To fill this research gap and propose a inclusive policy structure for achieving the sustainable development goals. This study is the earliest attempt that delve into the effects o of geopolitical risk (GPR), financial development (FD), and renewable energy consumption (REC) on load capacity factor (LCF) under the framework of load capacity curve (LCC) hypothesis for selected Asian countries during 1990-2020. In this regard, we use several preliminary sensitivity tests to check the features and reliability of the dataset. Similarly, we use panel quantile regression for investigating long-run relationships. The factual results affirm the existence of the LCC hypothesis in selected Asian countries. Our findings also show that geopolitical risk reduces environmental quality whereas financial development and REC increase environmental quality. Drawing from the empirical findings, this study suggests a holistic policy approach for achieving the targets of SDG 13 (climate change).
  17. Sa'adi Z, Al-Suwaiyan MS, Yaseen ZM, Tan ML, Goliatt L, Heddam S, et al.
    J Environ Manage, 2024 May 11;360:121087.
    PMID: 38735071 DOI: 10.1016/j.jenvman.2024.121087
    Climate change has significantly altered the characteristics of climate zones, posing considerable challenges to ecosystems and biodiversity, particularly in Borneo, known for its high species density per unit area. This study aimed to classify the region into homogeneous climate groups based on long-term average behavior. The most effective parameters from the high-resolution daily gridded Princeton climate datasets spanning 65 years (1950-2014) were utilized, including rainfall, relative humidity (RH), temperatures (Tavg, Tmin, Tmax, and diurnal temperature range (DTR)), along with elevation data at 0.25° resolution. The FCM clustering method outperformed K-Mean and two Ward's hierarchical methods (WardD and WardD2) in classifying Borneo's climate zones based on multi-criteria assessment, exhibiting the lowest average distance (2.172-2.180) and the highest compromise programming index (CPI)-based correlation ranking among cluster averages across all climate parameters. Borneo's climate zones were categorized into four: 'Wet and cold' (WC) and 'Wet' (W) representing wetter zones, and 'Wet and hot' (WH) and 'Dry and hot' (DH) representing hotter zones, each with clearly defined boundaries. For future projection, EC-Earth3-Veg ranked first for all climate parameters across 961 grid points, emerging as the top-performing model. The linear scaling (LS) bias-corrected EC-Earth3-Veg model, as shown in the Taylor diagram, closely replicated the observed datasets, facilitating future climate zone reclassification. Improved performance across parameters was evident based on MAE (35.8-94.6%), MSE (57.0-99.5%), NRMSE (42.7-92.1%), PBIAS (100-108%), MD (23.0-85.3%), KGE (21.1-78.1%), and VE (5.1-9.1%), with closer replication of empirical probability distribution function (PDF) curves during the validation period. In the future, Borneo's climate zones will shift notably, with WC elongating southward along the mountainous spine, W forming an enclave over the north-central mountains, WH shifting northward and shrinking inland, and DH expanding northward along the western coast. Under SSP5-8.5, WC is expected to expand by 39% and 11% for the mid- and far-future periods, respectively, while W is set to shrink by 46%. WH is projected to expand by 2% and 8% for the mid- and far-future periods, respectively. Conversely, DH is expected to expand by 43% for the far-future period but shrink by 42% for the mid-future period. This study fills a gap by redefining Borneo's climate zones based on an increased number of effective parameters and projecting future shifts, utilizing advanced clustering methods (FCM) under CMIP6 scenarios. Importantly, it contributes by ranking GCMs using RIMs and CPI across multiple climate parameters, addressing a previous gap in GCM assessment. The study's findings can facilitate cross-border collaboration by providing a shared understanding of climate dynamics and informing joint environmental management and disaster response efforts.
  18. Gao Z, Zhao Y, Li L, Hao Y
    J Environ Manage, 2024 Apr 27;359:120976.
    PMID: 38678902 DOI: 10.1016/j.jenvman.2024.120976
    Recent years have witnessed growing public concern over air pollution in China, posing a challenge to the government's environmental management efforts. Empirical evidence indicates that the digital economy contributes to mitigating environmental pollution. Given that national audits are a crucial part of the national oversight system and considering the significant role of digital technology in audit governance, it is relevant to explore how the digital economy can support national audits in enhancing China's environmental quality. This study investigates the environmental impact of national audit governance, utilizing a dataset from 1540 counties in China spanning from 2005 to 2018. The findings reveal that effective national audits contribute to reducing haze pollution (HP) levels, with the digital economy playing a moderating role. The results also demonstrate heterogeneity; national audits are particularly effective in regions characterized by high urbanization rates, severe HP, and stringent environmental regulations. The mechanism analysis suggests that industrial transformation and enhanced government governance are the key mechanisms through which national audits reduce regional HP. Additionally, reforming the audit management system can amplify the effects of national audits on reducing HP.
  19. Tan H, Othman MHD, Chong WT, Kek HY, Wong SL, Nyakuma BB, et al.
    J Environ Manage, 2024 Apr;356:120644.
    PMID: 38522274 DOI: 10.1016/j.jenvman.2024.120644
    Plastics are a wide range of synthetic or semi-synthetic materials, mainly consisting of polymers. The use of plastics has increased to over 300 million metric tonnes in recent years, and by 2050, it is expected to grow to 800 million. Presently, a mere 10% of plastic waste is recycled, with approximately 75% ended up in landfills. Inappropriate disposal of plastic waste into the environment poses a threat to human lives and marine species. Therefore, this review article highlights potential routes for converting plastic/microplastic waste into valuable resources to promote a greener and more sustainable environment. The literature review revealed that plastics/microplastics (P/MP) could be recycled or upcycled into various products or materials via several innovative processes. For example, P/MP are recycled and utilized as anodes in lithium-ion (Li-ion) and sodium-ion (Na-ion) batteries. The anode in Na-ion batteries comprising PP carbon powder exhibits a high reversible capacity of ∼340 mAh/g at 0.01 A/g current state. In contrast, integrating Fe3O4 and PE into a Li-ion battery yielded an excellent capacity of 1123 mAh/g at 0.5 A/g current state. Additionally, recycled Nylon displayed high physical and mechanical properties necessary for excellent application as 3D printing material. Induction heating is considered a revolutionary pyrolysis technique with improved yield, efficiency, and lower energy utilization. Overall, P/MPs are highlighted as abundant resources for the sustainable production of valuable products and materials such as batteries, nanomaterials, graphene, and membranes for future applications.
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links