Displaying publications 261 - 280 of 296 in total

Abstract:
Sort:
  1. Meramat A, Rajab NF, Shahar S, Sharif RA
    J Nutr Health Aging, 2017;21(5):539-545.
    PMID: 28448084 DOI: 10.1007/s12603-016-0759-1
    BACKGROUND: A cross sectional study was conducted in a group of 317 subjects older than 60 in Malaysia, aimed to determine risk factors associated with cognitive impairment in older adults, focusing on trace elements and DNA damage.

    METHOD: Cognitive decline was determined by Montreal Cognitive Assessment (MoCA). Oxidative stress markers (malondialdehyde-MDA and superoxide dismutase-SOD) were determined and DNA damage was assayed using Alkaline Comet Assay. Toenail samples were taken and analyzed using ICP-MS to determine trace element levels.

    RESULTS: A total of 62.1 % of subjects had cognitive impairment. Subjects with cognitive impairment had significantly higher levels of MDA and DNA damage as compared to the group with normal cognitive function; MDA (2.07 ± 0.05 nmol/L vs 1.85 ± 0.06 nmol/L) (p<0.05) and DNA damage (% Tail Density, 14.52 ± 0.32 vs 10.31 ± 0.42; Tail Moment, 1.79 ± 0.06 vs 1.28 ± 0.06) (p<0.05 for all parameters). However, the level of SOD among subjects with cognitive impairment (6.67 ± 0.33 u.e/min/mg protein) was lower than the level among those with normal cognitive functions (11.36 ± 0.65 u.e/min/mg protein) (p<0.05). Multiple logistic regression revealed the predictors for cognitive impairment among the subjects were DNA damage (Adjusted odd ratio [OR], 1.37; 95% confidence interval [CI], 1.18-1.59), level of trace elements in toenails namely, lead (OR, 2.471; CI, 1.535-3.980) and copper (OR, 1.275; CI, 1.047-1.552) (p<0.05).

    CONCLUSION: High levels of lead and copper can lead to increase in oxidative stress levels and are associated with DNA damage that eventually could be associated with cognitive decline.

    Matched MeSH terms: Lead/administration & dosage; Lead/adverse effects*; Lead/metabolism
  2. Dadrasnia A, Pariatamby A
    Waste Manag Res, 2016 Mar;34(3):246-53.
    PMID: 26675494 DOI: 10.1177/0734242X15621375
    In phytoremediation of co-contaminated soil, the simultaneous and efficient remediation of multiple pollutants is a major challenge rather than the removal of pollutants. A laboratory-scale experiment was conducted to investigate the effect of 5% addition of each of three different organic waste amendments (tea leaves, soy cake, and potato skin) to enhance the phytoaccumulation of lead (60 mg kg(-1)) and diesel fuel (25,000 mg kg(-1)) in co-contaminated soil by Dracaena reflexa Lam for a period of 180 day. The highest rate of oil degradation was recorded in co-contaminated soil planted with D. reflexa and amended with soy cake (75%), followed by potato skin (52.8%) and tea leaves (50.6%). Although plants did not accumulate hydrocarbon from the contaminated soil, significant bioaccumulation of lead in the roots and stems of D. reflexa was observed. At the end of 180 days, 16.7 and 9.8 mg kg(-1) of lead in the stems and roots of D. reflexa were recorded, respectively, for the treatment with tea leaves. These findings demonstrate the potential of organic waste amendments in enhancing phytoremediation of oil and bioaccumulation of lead.
    Matched MeSH terms: Lead/metabolism*
  3. Abdullah M, Rahman FA, Gnanasegaran N, Govindasamy V, Abu Kasim NH, Musa S
    ScientificWorldJournal, 2014;2014:235941.
    PMID: 24616615 DOI: 10.1155/2014/235941
    Lead (Pb(2+)) exposure continues to be a significant public health problem. Therefore, it is vital to have a continuous epidemiological dataset for a better understanding of Pb(2+) toxicity. In the present study, we have exposed stem cells isolated from deciduous and permanent teeth, periodontal ligament, and bone marrow to five different types of Pb(2+) concentrations (160, 80, 40, 20, and 10 µM) for 24 hours to identify the adverse effects of Pb(2+) on the proliferation, differentiation, and gene expression on these cell lines. We found that Pb(2+) treatment altered the morphology and adhesion of the cells in a dose-dependent manner. There were no significant changes in terms of cell surface phenotypes. Cells exposed to Pb(2+) continued to differentiate into chondrogenesis and adipogenesis, and a severe downregulation was observed in osteogenesis. Gene expression studies revealed a constant expression of key markers associated with stemness (Oct 4, Rex 1) and DNA repair enzyme markers, but downregulation occurred with some ectoderm and endoderm markers, demonstrating an irregular and untimely differentiation trail. Our study revealed for the first time that Pb(2+) exposure not only affects the phenotypic characteristics but also induces significant alteration in the differentiation and gene expression in the cells.
    Matched MeSH terms: Lead/pharmacology*
  4. Sadrolhosseini AR, Noor AS, Bahrami A, Lim HN, Talib ZA, Mahdi MA
    PLoS One, 2014;9(4):e93962.
    PMID: 24733263 DOI: 10.1371/journal.pone.0093962
    Polypyrrole multi-walled carbon nanotube composite layers were used to modify the gold layer to measure heavy metal ions using the surface plasmon resonance technique. The new sensor was fabricated to detect trace amounts of mercury (Hg), lead (Pb), and iron (Fe) ions. In the present research, the sensitivity of a polypyrrole multi-walled carbon nanotube composite layer and a polypyrrole layer were compared. The application of polypyrrole multi-walled carbon nanotubes enhanced the sensitivity and accuracy of the sensor for detecting ions in an aqueous solution due to the binding of mercury, lead, and iron ions to the sensing layer. The Hg ion bonded to the sensing layer more strongly than did the Pb and Fe ions. The limitation of the sensor was calculated to be about 0.1 ppm, which produced an angle shift in the region of 0.3° to 0.6°.
    Matched MeSH terms: Lead/analysis
  5. Rahman MM, Azirun SM, Boyce AN
    PLoS One, 2013;8(5):e62941.
    PMID: 23667546 DOI: 10.1371/journal.pone.0062941
    Soil contamination by copper (Cu) and lead (Pb) is a widespread environmental problem. For phytoextraction to be successful and viable in environmental remediation, strategies that can improve plant uptake must be identified. In the present study we investigated the use of nitrogen (N) fertilizer as an efficient way to enhance accumulation of Cu and Pb from contaminated industrial soils into amaranth, Indian mustard and sunflower.
    Matched MeSH terms: Lead/pharmacokinetics*
  6. Rafatullah M, Sulaiman O, Hashim R, Ahmad A
    J Hazard Mater, 2009 Oct 30;170(2-3):969-77.
    PMID: 19520510 DOI: 10.1016/j.jhazmat.2009.05.066
    The present study proposed the use of meranti sawdust in the removal of Cu(II), Cr(III), Ni(II) and Pb(II) ions from synthetic aqueous solutions. Batch adsorption studies showed that meranti sawdust was able to adsorb Cu(II), Cr(III), Ni(II) and Pb(II) ions from aqueous solutions in the concentration range 1-200mg/L. The adsorption was favoured with maximum adsorption at pH 6, whereas the adsorption starts at pH 1 for all metal ions. The effects of contact time, initial concentration of metal ions, adsorbent dosage and temperature have been reported. The applicability of Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm was tried for the system to completely understand the adsorption isotherm processes. The adsorption kinetics tested with pseudo-first-order and pseudo-second-order models yielded high R(2) values from 0.850 to 0.932 and from 0.991 to 0.999, respectively. The meranti sawdust was found to be cost effective and has good efficiency to remove these toxic metal ions from aqueous solution.
    Matched MeSH terms: Lead/isolation & purification
  7. Ikonomopoulou MP, Olszowy H, Hodge M, Bradley AJ
    PMID: 19247670 DOI: 10.1007/s00360-009-0347-3
    In this study on green turtles, Chelonia mydas, from Peninsular Malaysia, the effect of selected environmental toxicants was examined in vitro. Emphasis was placed on purported hormone-mimicking chemicals such as dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene, dieldrin, lead, zinc and copper. Five concentrations were used: high (1 mg/L), medium (10(-1) mg/L), low (10(-2) mg/L), very low (10(-6) mg/L) and control (diluted carrier solvent but no toxicants). The results suggest that environmental pesticides and heavy metals may significantly alter the binding of steroids [i.e. testosterone (T) and oestradiol] to the plasma proteins in vitro. Competition studies showed that only Cu competed for binding sites with testosterone in the plasma collected from nesting C. mydas. Dieldrin and all heavy metals competed with oestradiol for binding sites. Furthermore, testosterone binding affinity was affected at various DDT concentrations and was hypothesised that DDT in vivo may act to inhibit steroid-protein interactions in nesting C. mydas. Although the precise molecular mechanism is yet to be described, DDT could have an effect upon the protein conformation thus affecting T binding (e.g. the T binding site on the steroid hormone binding protein molecule).
    Matched MeSH terms: Lead/toxicity
  8. Alkarkhi AF, Ramli SB, Easa AM
    Int J Food Sci Nutr, 2009;60 Suppl 4:116-25.
    PMID: 19115121 DOI: 10.1080/09637480802609368
    Major (sodium, potassium, calcium, magnesium) and minor elements (iron, copper, zinc, manganese) and one heavy metal (lead) of Cavendish banana flour and Dream banana flour were determined, and data were analyzed using multivariate statistical techniques of factor analysis and discriminant analysis. Factor analysis yielded four factors explaining more than 81% of the total variance: the first factor explained 28.73%, comprising magnesium, sodium, and iron; the second factor explained 21.47%, comprising only manganese and copper; the third factor explained 15.66%, comprising zinc and lead; while the fourth factor explained 15.50%, comprising potassium. Discriminant analysis showed that magnesium and sodium exhibited a strong contribution in discriminating the two types of banana flour, affording 100% correct assignation. This study presents the usefulness of multivariate statistical techniques for analysis and interpretation of complex mineral content data from banana flour of different varieties.
    Matched MeSH terms: Lead/analysis
  9. Shuhaimi-Othman M, Mushrifah I, Lim EC, Ahmad A
    Environ Monit Assess, 2008 Aug;143(1-3):345-54.
    PMID: 17987397
    Water from 15 sampling stations in Tasik Chini (Chini Lake), Peninsular Malaysia were sampled for 12 months from September 2004 until August 2005 and analyzed for 11 metals including iron (Fe), aluminum (Al), manganese (Mn), barium (Ba), zinc (Zn), lead (Pb), copper (Cu), cadmium (Cd), nickel (Ni), chromium (Cr) and cobalt (Co). Results showed that the mean (min-max) metal concentrations (in micrograms per liter) in Tasik Chini waters for the 12 months sampling based on 15 sampling stations (in descending order) for Fe, Al, Mn, Ba, Zn, Pb, Cu and Cd were 794.84 (309.33-1609.07), 194.53 (62.37-665.93), 29.16 (16.68-79.85), 22.07 (15.64-29.71), 5.12 (2.224-6.553), 2.36 (1.165-4.240), 0.832 (0.362-1.443) and 0.421 (0.254-0.696) respectively. Concentration for three metals i.e. Ni, Cr and Co were too low and not detected by the graphite furnace Atomic Absorption Spectrophotometry (AAS). Comparison with various water quality standards showed that the mean metals concentration in surface water of Tasik Chini were low and within the range of natural background except for Fe and Al. In general, metal concentrations in Tasik Chini water varied temporally and spatially. The main factors influencing these metal concentrations in the water were the raining season and mining activities. Stations located at Tanjung Jerangking and Melai areas were the most effected due to those factors.
    Matched MeSH terms: Lead/analysis
  10. Khandanlou R, Ahmad MB, Fard Masoumi HR, Shameli K, Basri M, Kalantari K
    PLoS One, 2015;10(3):e0120264.
    PMID: 25815470 DOI: 10.1371/journal.pone.0120264
    Rice straw/magnetic nanocomposites (RS/Fe3O4-NCs) were prepared via co-precipitation method for removal of Pb(II) and Cu(II) from aqueous solutions. Response surface methodology (RSM) was utilized to find the optimum conditions for removal of ions. The effects of three independent variables including initial ion concentration, removal time, and adsorbent dosage were investigated on the maximum adsorption of Pb (II) and Cu (II). The optimum conditions for the adsorption of Pb(II) and Cu(II) were obtained (100 and 60 mg/L) of initial ion concentration, (41.96 and 59.35 s) of removal time and 0.13 g of adsorbent for both ions, respectively. The maximum removal efficiencies of Pb(II) and Cu(II) were obtained 96.25% and 75.54%, respectively. In the equilibrium isotherm study, the adsorption data fitted well with the Langmuir isotherm model. The adsorption kinetics was best depicted by the pseudo-second order model. Desorption experiments showed adsorbent can be reused successfully for three adsorption-desorption cycles.
    Matched MeSH terms: Lead/chemistry*
  11. Ngo DB, Chaibun T, Yin LS, Lertanantawong B, Surareungchai W
    Anal Bioanal Chem, 2021 Feb;413(4):1027-1037.
    PMID: 33236225 DOI: 10.1007/s00216-020-03061-1
    The aim of this study was to develop a highly specific electrochemical DNA sensor using functionalized lead sulphide (PbS) quantum dots for hepatitis E virus genotype 3 (HEV3) DNA target detection. Functionalized-PbS quantum dots (QDs) were used as an electrochemical label for the detection of HEV3-DNA target by the technique of square wave anodic stripping voltammetry (SWASV). The functionalized-PbS quantum dots were characterized by UV-vis, FTIR, XRD, TEM and zeta potential techniques. As-prepared, functionalized-PbS quantum dots have an average size of 4.15 ± 1.35 nm. The detection platform exhibited LOD and LOQ values of 1.23 fM and 2.11 fM, respectively. HEV3-DNA target spiked serum is also reported.Graphical abstract.
    Matched MeSH terms: Lead/chemistry*
  12. Jahromi MF, Liang JB, Ebrahimi R, Soleimani AF, Rezaeizadeh A, Abdullah N, et al.
    Animal, 2017 May;11(5):755-761.
    PMID: 27804905 DOI: 10.1017/S175173111600224X
    To alleviate adverse effects of heavy metal toxicity, diverse range of removing methods have been suggested, that is usage of algae, agricultural by-products and microorganisms. Here, we investigated lead (Pb) biosorption efficacy by two lactic acid bacteria species (LABs) in broiler chickens. In an in vitro study, Pb was added to culture medium of LABs (Lactobacillus pentosus ITA23 and Lactobacillus acidipiscis ITA44) in the form of lead acetate. Results showed that these LABs were able to absorb more than 90% of Pb from the culture medium. In follow-up in vivo study, LABs mixture was added to diet of broiler chickens contained lead acetate (200 mg/kg). Pb exposure significantly increased lipid peroxidation and decreased antioxidant activity in liver. The changes were recovered back to normal level upon LABs supplementation. Moreover, addition of LABs eliminated the liver tissue lesion and the suppressed performance in Pb-exposed chicks. Analysis of liver and serum samples indicated 48% and 28% reduction in Pb accumulation, respectively. In conclusion, results of this study showed that L. pentosus ITA23 and L. acidipiscis ITA44 effectively biosorb and expel dietary Pb from gastrointestinal tract of chickens.
    Matched MeSH terms: Lead/metabolism*
  13. Aldawsari A, Khan MA, Hameed BH, Alqadami AA, Siddiqui MR, Alothman ZA, et al.
    PLoS One, 2017;12(9):e0184493.
    PMID: 28910368 DOI: 10.1371/journal.pone.0184493
    A substantive approach converting waste date pits to mercerized mesoporous date pit activated carbon (DPAC) and utilizing it in the removal of Cd(II), Cu(II), Pb(II), and Zn(II) was reported. In general, rapid heavy metals adsorption kinetics for Co range: 25-100 mg/L was observed, accomplishing 77-97% adsorption within 15 min, finally, attaining equilibrium in 360 min. Linear and non-linear isotherm studies revealed Langmuir model applicability for Cd(II) and Pb(II) adsorption, while Freundlich model was fitted to Zn(II) and Cu(II) adsorption. Maximum monolayer adsorption capacities (qm) for Cd(II), Pb(II), Cu(II), and Zn(II) obtained by non-linear isotherm model at 298 K were 212.1, 133.5, 194.4, and 111 mg/g, respectively. Kinetics modeling parameters showed the applicability of pseudo-second-order model. The activation energy (Ea) magnitude revealed physical nature of adsorption. Maximum elution of Cu(II) (81.6%), Zn(II) (70.1%), Pb(II) (96%), and Cd(II) (78.2%) were observed with 0.1 M HCl. Thermogravimetric analysis of DPAC showed a total weight loss (in two-stages) of 28.3%. Infra-red spectral analysis showed the presence of carboxyl and hydroxyl groups over DPAC surface. The peaks at 820, 825, 845 and 885 cm-1 attributed to Zn-O, Pb-O, Cd-O, and Cu-O appeared on heavy metals saturated DPAC, confirmed their binding on DPAC during the adsorption.
    Matched MeSH terms: Lead/isolation & purification
  14. Ng CKY, Lam JCW, Zhang XH, Gu HX, Li TH, Ye MB, et al.
    Environ Pollut, 2018 Mar;234:735-742.
    PMID: 29245147 DOI: 10.1016/j.envpol.2017.11.100
    Sea turtles are globally endangered and face daily anthropogenic threats, including pollution. However, there is a lack of ecotoxicological information on sea turtles, especially in the Asia-Pacific region. This study aims to determine pollutant levels of foraging green turtles (Chelonia mydas) in South China, including Hong Kong, Guangdong and Taiwan, as a basis for their conservation. Scute, liver and muscle tissues of stranded green turtles were analysed for levels of 17 trace elements and methylmercury (MeHg) (n = 86 for scute and n = 14 for liver) and polybrominated diphenyl ethers (PBDEs) (n = 11 for muscle and n = 13 for liver). Ten-fold higher levels of Pb, Ba, V and Tl and 40-fold greater Cd levels were measured in green turtle livers in South China relative to other studies conducted over 10 years ago. Measured PBDE levels were also 27-fold and 50-fold greater than those reported in Australia and Japan. These results warrant further investigation of potential toxicological risks to green turtles in South China and their source rookeries in Malaysia, Micronesia, Indonesia, Marshall Islands, Japan and Taiwan. Research should target monitoring pollutant levels in sea turtles within the West Pacific/Southeast Asia regional management unit spanning East Asia to Southeast Asia to fill in knowledge gaps, in particular in areas such as Thailand, Vietnam, Indonesia, Malaysia and the Philippines where less or no data is available and where foraging grounds of sea turtles have been identified.
    Matched MeSH terms: Lead/analysis
  15. Ashrafi M, Mohamad S, Yusoff I, Shahul Hamid F
    Environ Sci Pollut Res Int, 2015 Jan;22(1):223-30.
    PMID: 25060308 DOI: 10.1007/s11356-014-3299-4
    Heavy-metal-contaminated soil is one of the major environmental pollution issues all over the world. In this study, two low-cost amendments, inorganic eggshell and organic banana stem, were applied to slightly alkaline soil for the purpose of in situ immobilization of Pb, Cd, and Zn. The artificially metal-contaminated soil was treated with 5% eggshell or 10% banana stem. To simulate the rainfall conditions, a metal leaching experiment for a period of 12 weeks was designed, and the total concentrations of the metals in the leachates were determined every 2 weeks. The results from the metal leaching analysis revealed that eggshell amendment generally reduced the concentrations of Pb, Cd, and Zn in the leachates, whereas banana stem amendment was effective only on the reduction of Cd concentration in the leachates. A sequential extraction analysis was carried out at the end of the experiment to find out the speciation of the heavy metals in the amended soils. Eggshell amendment notably decreased mobility of Pb, Cd, and Zn in the soil by transforming their readily available forms to less accessible fractions. Banana stem amendment also reduced exchangeable form of Cd and increased its residual form in the soil.
    Matched MeSH terms: Lead/analysis
  16. Hajeb P, Selamat J, Afsah-Hejri L, Mahyudin NA, Shakibazadeh S, Sarker MZ
    J Food Prot, 2015 Jan;78(1):172-9.
    PMID: 25581193 DOI: 10.4315/0362-028X.JFP-14-248
    High-quality fish oil for human consumption requires low levels of toxic elements. The aim of this study was to compare different oil extraction methods to identify the most efficient method for extracting fish oil of high quality with the least contamination. The methods used in this study were Soxhlet extraction, enzymatic extraction, wet reduction, and supercritical fluid extraction. The results showed that toxic elements in fish oil could be reduced using supercritical CO2 at a modest temperature (60°C) and pressure (35 MPa) with little reduction in the oil yield. There were significant reductions in mercury (85 to 100%), cadmium (97 to 100%), and lead (100%) content of the fish oil extracted using the supercritical fluid extraction method. The fish oil extracted using conventional methods contained toxic elements at levels much higher than the accepted limits of 0.1 μg/g.
    Matched MeSH terms: Lead/isolation & purification*
  17. Hajeb P, Jinap S, Shakibazadeh Sh, Afsah-Hejri L, Mohebbi GH, Zaidul IS
    PMID: 25090228 DOI: 10.1080/19440049.2014.942707
    This study aims to optimise the operating conditions for the supercritical fluid extraction (SFE) of toxic elements from fish oil. The SFE operating parameters of pressure, temperature, CO2 flow rate and extraction time were optimised using a central composite design (CCD) of response surface methodology (RSM). High coefficients of determination (R²) (0.897-0.988) for the predicted response surface models confirmed a satisfactory adjustment of the polynomial regression models with the operation conditions. The results showed that the linear and quadratic terms of pressure and temperature were the most significant (p < 0.05) variables affecting the overall responses. The optimum conditions for the simultaneous elimination of toxic elements comprised a pressure of 61 MPa, a temperature of 39.8ºC, a CO₂ flow rate of 3.7 ml min⁻¹ and an extraction time of 4 h. These optimised SFE conditions were able to produce fish oil with the contents of lead, cadmium, arsenic and mercury reduced by up to 98.3%, 96.1%, 94.9% and 93.7%, respectively. The fish oil extracted under the optimised SFE operating conditions was of good quality in terms of its fatty acid constituents.
    Matched MeSH terms: Lead/analysis; Lead/isolation & purification
  18. Ebrahimi R, Faseleh Jahromi M, Liang JB, Soleimani Farjam A, Shokryazdan P, Idrus Z
    Biomed Res Int, 2015;2015:149745.
    PMID: 25695048 DOI: 10.1155/2015/149745
    Lead- (Pb-) induced oxidative stress is known to suppress growth performance and feed efficiency in broiler chickens. In an attempt to describe the specific underlying mechanisms of such phenomenon we carried out the current study. Ninety-six one-day-old broiler chicks were randomly assigned to 2 dietary treatment groups of 6 pen replicates, namely, (i) basal diet containing no lead supplement (control) and (ii) basal diet containing 200 mg lead acetate/kg of diet. Following 3 weeks of experimental period, jejunum samples were collected to examine the changes in gene expression of several nutrient transporters, antioxidant enzymes, and heat shock protein 70 (Hsp70) using quantitative real-time PCR. The results showed that addition of lead significantly decreased feed intake, body weight gain, and feed efficiency. Moreover, with the exception of GLUT5, the expression of all sugar, peptide, and amino acid transporters was significantly downregulated in the birds under Pb induced oxidative stress. Exposure to Pb also upregulated the antioxidant enzymes gene expression together with the downregulation of glutathione S-transferase and Hsp70. In conclusion, it appears that Pb-induced oxidative stress adversely suppresses feed efficiency and growth performance in chicken and the possible underlying mechanism for such phenomenon is downregulation of major nutrient transporter genes in small intestine.
    Matched MeSH terms: Lead/metabolism*
  19. Wee SS, Ng YH, Ng SM
    Talanta, 2013 Nov 15;116:71-6.
    PMID: 24148375 DOI: 10.1016/j.talanta.2013.04.081
    Carbon dots have great potential to be utilised as an optical sensing probe due to its unique photoluminescence and less toxic properties. This work reports a simple and novel synthesis method of carbon dots via direct acid hydrolysis of bovine serum albumin protein in a one-pot approach. Optimisation of the important synthetic parameters has been performed which consists of temperature effect, acid to protein ratio and kinetics of reaction. Higher temperature has promoted better yield with shorter reaction time. The carbon dots obtained shows a strong emission at the wavelength of 400 nm with an optimum excitation of 305 nm. The potential of the carbon dots as optical sensing probe has been investigated on with different cations that are of environmental and health concern. The fluorescence of the carbon dots was significantly quenched particularly by lead (II) ions in a selective manner. Further analytical study has been performed to leverage the performance of the carbon dots for lead (II) ions sensing using the standard Stern-Volmer relationship. The sensing probe has a dynamic linear range up to 6.0 mM with a Stern-Volmer constant of 605.99 M(-1) and a limit of detection (LOD) of 5.05 μM. The probe performance was highly repeatable with a standard deviation below 3.0%. The probe suggested in this study demonstrates the potential of a more economical and greener approach that uses protein based carbon dots for sensing of heavy metal ions.
    Matched MeSH terms: Lead/isolation & purification*
  20. Kamari A, Ngah WS
    Colloids Surf B Biointerfaces, 2009 Oct 15;73(2):257-66.
    PMID: 19556114 DOI: 10.1016/j.colsurfb.2009.05.024
    The kinetic and thermodynamic adsorption and adsorption isotherms of Pb(II) and Cu(II) ions onto H(2)SO(4) modified chitosan were studied in a batch adsorption system. The experimental results were fitted using Freundlich, Langmuir and Dubinin-Radushkevich isotherms; the Langmuir isotherm showed the best conformity to the equilibrium data. The pseudo-first order, pseudo-second order and intraparticle diffusion kinetic models were employed to analyze the kinetic data. The adsorption behavior of Pb(II) and Cu(II) was best described by the pseudo-second order model. Thermodynamic parameters such as free energy change (DeltaG degrees ), enthalpy change (DeltaH degrees ) and entropy change (DeltaS degrees ) were determined; the adsorption process was found to be both spontaneous and exothermic. No physical damage to the adsorbents was observed after three cycles of adsorption/desorption using EDTA and HCl as eluents. The mechanistic pathway of the Pb(II) and Cu(II) uptake was examined by means of Fourier transform infrared (FTIR) and Energy dispersive X-ray (EDX) spectroscopy. The equilibrium parameter (R(L)) indicated that chitosan-H(2)SO(4) was favorable for Pb(II) and Cu(II) adsorption.
    Matched MeSH terms: Lead/metabolism*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links