METHODS: The study was focused on assessing the impact of tilapia culture at sites nearer to the AIZ vs more distant sites, the former with a greater likelihood of receiving escapees. Two major sites were chosen; within 5 km (near-cage) and within 5-15 km (far-cage) radii from the AIZ. Fish sampling was conducted using multiple mesh sizes of gill nets (3.7, 5.1, 6.5, 7.6, and 10.2 cm) deployed at the littoral zone of the sampling points. Species diversity, abundance, dietary habits, and habitat preference were investigated.
RESULTS: The CPUE (individual/hour) of native fish species at the far-cage site of the AIZ Reservoir was found to be significantly higher (p < 0.05) than that at the near-cage site. Principal component analysis (PCA) based on diet and habitat preferences showed that the tilapia, O. niloticus had almost overlapping diet resources and habitat with native fish species.
CONCLUSION: We conclude that there is a correlation between the reduced catches of native species (based on CPUE) and the high presence of tilapia. Thus, appropriate actions must be implemented for strategic and effective planning in terms of native fish conservation.
METHODS: This study enumerated the abundance of E. coli in the water and sediment at five urban lakes in the Kuala Lumpur-Petaling Jaya area, state of Selangor, Malaysia. We developed a novel method for measuring habitat transition rate of sediment E. coli to the water column, and evaluated the effects of habitat transition on E. coli abundance in the water column after accounting for its decay in the water column.
RESULTS: The abundance of E. coli in the sediment ranged from below detection to 12,000 cfu g-1, and was about one order higher than in the water column (1 to 2,300 cfu mL-1). The habitat transition rates ranged from 0.03 to 0.41 h-1. In contrast, the E. coli decay rates ranged from 0.02 to 0.16 h-1. In most cases (>80%), the habitat transition rates were higher than the decay rates in our study.
DISCUSSION: Our study provided a possible explanation for the persistence of E. coli in tropical lakes. To the best of our knowledge, this is the first quantitative study on habitat transition of E. coli from sediments to water column.
METHODS: Cancer experts in lower-resource health care systems (as defined by the World Bank as low- and middle-income countries; N = 151) were contacted to participate in a modified consensus-seeking Delphi survey, comprising two rounds. In round 1, participants (n = 69) rated predetermined areas of potential research priority (ARPs) for importance and suggested missing ARPs. In round 2, the same participants (n = 49) rated an integrated list of predetermined and suggested ARPs from round 1, then undertook a forced choice priority ranking exercise. Composite voting scores (T-scores) were used to rank the ARPs. Importance ratings were summarized descriptively. Findings were discussed with international patient advocacy organization representatives.
RESULTS: The top ARP was research into strategies adapting guidelines or treatment strategies in line with available resources (particularly systemic therapy) (T = 83). Others included cancer registries (T = 62); prevention (T = 52); end-of-life care (T = 53); and value-based and affordable care (T = 51). The top COVID-19/cancer ARP was strategies to incorporate what has been learned during the pandemic that can be maintained posteriorly (T = 36). Others included treatment schedule interruption (T = 24); cost-effective reduction of COVID-19 morbidity/mortality (T = 19); and pandemic preparedness (T = 18).
CONCLUSION: Areas of strategic priority favored by cancer researchers in RCRs are related to adaptive treatment guidelines; sustainable implementation of cancer registries; prevention strategies; value-based and affordable cancer care; investments in research capacity building; epidemiologic work on local risk factors for cancer; and combatting inequities of prevention and care access.