Rhodococci are renowned for their great metabolic repertoire partly because of their numerous putative pathways for large number of specialized metabolites such as biosurfactant. Screening and genome-based assessment for the capacity to produce surface-active molecules was conducted on Rhodococcus sp. ADL36, a diesel-degrading Antarctic bacterium. The strain showed a positive bacterial adhesion to hydrocarbon (BATH) assay, drop collapse test, oil displacement activity, microplate assay, maximal emulsification index at 45% and ability to reduce water surface tension to < 30 mN/m. The evaluation of the cell-free supernatant demonstrated its high stability across the temperature, pH and salinity gradient although no correlation was found between the surface and emulsification activity. Based on the positive relationship between the assessment of macromolecules content and infrared analysis, the extracted biosurfactant synthesized was classified as a lipopeptide. Prediction of the secondary metabolites in the non-ribosomal peptide synthetase (NRPS) clusters suggested the likelihood of the surface-active lipopeptide production in the strain's genomic data. This is the third report of surface-active lipopeptide producers from this phylotype and the first from the polar region. The lipopeptide synthesized by ADL36 has the prospect to be an Antarctic remediation tool while furnishing a distinctive natural product for biotechnological application and research.
Over the years, pipelines have been the most economic medium for transporting crude oil to production and distribution facilities in the Niger Delta area of Nigeria. However, damages to the pipelines in this area by interdiction have hampered the continuous flow of crude oil to the facilities. Consequently, the revenue of the government dwindles, and the environment is severely degraded. This study assesses the economic and environmental impacts of pipeline interdiction in the Niger Delta region. Data from National oil spills detection and response agency, Nigeria is used to map spatial distribution of oil spills using Kernel Density Estimation with Geographic Information System. Literature was assessed to synthesize the historical, socioeconomic, and environmental impacts of oil spills and pipeline interdiction. Soil samples were collected from study area to determine the types of hydrocarbon pollutants and their concentrations in comparison with uncontaminated sites in the area. Results show that the range of concentrations of total petroleum hydrocarbon (TPH) for the impacted soil (IMP) was 17.27-58.36 mg/kg; remediated soil (RS) was 11.73-50.78 mg/kg which were higher than the concentrations of 0.68 mg/kg in the control samples (CS). Polycyclic aromatic hydrocarbons (PAH) concentrations were in the range of 0.43-77.54 mg/kg for IMP, 0.42-10.65 mg/kg for RS, against CS value of 0.49 mg/kg while BTEX ranged between 0.02 - 0.38 mg/kg for IMP, 0.01-2.7 for RS against CS value of 0.01. The values of the PAH were higher than the limits of the Department of Petroleum Resources, Nigeria. This study also revealed that pipeline interdiction has affected the livelihood of the inhabitants of the study area and the revenue of the Nigerian government. The major hotspots for oil spills in the Niger Delta region are Bayelsa, Rivers and Delta states.
In seabed logging the magnitude of electromagnetic (EM) waves for the detection of a hydrocarbon reservoir in the marine environment is very important. Having a strong EM source for exploration target 4000 m below the sea floor is a very challenging task. A new carbon nanotubes (CNT) fibres/aluminium based EM transmitter is developed and NiZn ferrite as magnetic feeders was used in a scaled tank to evaluate the presence of oil. Resistive scaled tank experiments with a scale factor of 2000 were carried out. X-ray Diffraction (XRD), Raman Spectroscopy and Field Emission Scanning Electron Microscope (FESEM) were done to characterize the synthesized magnetic feeders. Single phase Ni0.76Mg0.04Zn0.2Fe2O4, obtained by the sol-gel method and sintered at 700 degrees C in air, has a [311] major peak. FESEM results show nanoparticles with average diameters of 17-45 nm. Samples which have a high Q-factor (approximately 50) was used as magnetic feeders for the EM transmitter. The magnitude of the EM waves of this new EM transmitter increases up to 400%. A curve fitting method using MATLAB software was done to evaluate the performance of the new EM transmitter. The correlation value with CNT fibres/aluminium-NiZnFe2O4 base transmitter shows a 152.5% increase of the magnetic field strength in the presence of oil. Modelling of the scale tank which replicates the marine environment was done using the Finite Element Method (FEM). In conclusion, FEM was able to delineate the presence of oil with greater magnitude of E-field (16.89%) and the B field (4.20%) due to the new EM transmitter.
Probiotics may be used to enhance the functionality and nutritional values of fermented sausages. This study aims to evaluate the physicochemical and sensory properties of beef sausages fermented by lactic acid bacteria of Lactobacillus plantarum IIA-2C12 and L. acidophilus IIA-2B4. These strains were isolated from beef cattle and have shown to display probiotic features. While the nutrient contents were not affected by the probiotics, the pH, texture, and color varied among the sausages. Further analysis on fatty acids showed different profiles of saturated (C14:0, C17:0, and C20:0) and unsaturated (C14:1, C18:1n9c, C18:2n6c, and C22:6n3) fatty acids in sausages with probiotics. Gas chromatography-mass spectrometry further revealed some flavor development compounds including acid, alcohols, aldehydes, aromatic, ketones, sulfur, hydrocarbons and terpenes, varied among the sausages. Hedonic test showed no difference in the preference toward aroma, texture, and color for untrained panelists.
The storage of oil sludge at refineries is a major problem to the petroleum industry. Oil sludge treatments such as by using sludge farming, incineration, physical and chemical techniques have been applied to separate the hydrocarbon from the solid sediment. The paper relates a characteristic study performed on solid sediment from a local oil sludge sample for making sintered brick. The study includes the used of XRD, XRF, digital microscopy and particle size analyzer. The result shows that the sample highly contains quartz minerals with particle size ranging from 0.5 – 200 ȝm. The chemical phosphorous from the surfactant can be removed by washing to make this solid sediment to be used as a material in the brick making.
The main goal of this research work is to measure the concentration levels of organochlorine residue in soil. The potential health risk of this pollutant on human was also determined. 10 samples were taken from a lowland paddy field situated in Kelantan, Malaysia. Physical parameters namely soil pH, organic carbon content, water content and particle size were identified to evaluate the quality of soil from the agriculture site. Soxhlet extraction and florisil clean-up process were applied to isolate 10 targeted organochlorine compounds prior to the final determination using a gas chromatography-electron capture detector. Soil from the lowland has characteristics such as slightly acidic, low organic carbon content, high water content and texture dominated by the sandy type. Concentration levels of six detected organochlorine pesticides were calculated in µg/kg. Hazard quotient value in all samples was less than the acceptable risk level HQ ≤ 1, thus reflecting the status of soil in the subjected area as unlikely to pose any adverse health effects.
Toluene (C7H8) a hydrocarbon in crude oil, is a common contaminant in soil and groundwater. In this study, the ability to degrade toluene was investigated from twelve bacteria isolates which were isolated from soil contaminated with oil. Out of 12 bacterial isolates tested, most of Pseudomonas sp. showed the capability to grow in 1 mM of toluene compared with other isolates on the third day of incubation. Based on enzyme assays towards toluene monooxygenase, Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were shown to have the highest ability to degrade toluene. The toluene monoxygenase activity was analysed by using two calorimetric methods, Horseradish peroxidase (HRP) and indole-indigo. Both of the methods measured the production of catechol by the enzymatic reaction of toluene monooxygenase. In the HRP assay, the highest enzyme activity was 0.274 U/mL, exhibited by Pseudomonas aeruginosa UKMP-14T. However, for indole-indigo assay, Bacillus cereus UKMP-6G produced the highest enzyme activity of 0.291 U/ml. Results from both experiments showed that Pseudomonas aeruginosa UKMP-14T and Bacillus cereus UKMP-6G were able to degrade toluene.
A study has been carried out to characterize hydrocarbons emitted from the burning of three tropical wood species. The woods were burned to ember and smoke aerosols emitted were sampled using high volume sampler fitted with a pre-cleaned glass fibre filters. Hydrocarbons were extracted using ultrasonic agitation with dichloromethane-methanol (3:1 v/v) as solvent and the extracts obtained were then fractionated on silica-alumina column. Detection and quantification of aliphatic and polycyclic aromatic hydrocarbons (PAHs) compounds were carried out using GC-MS. The results indicated that the major aliphatic hydrocarbons characterized were straight chain n-alkanes in the range of C12-C35 with Cmax in the range of C27-C33. Rhizophora apiculata and Hevea brasiliensis wood smoke exhibited a weak odd to even carbon number predominance with carbon preference index (CPI) values greater than one whereas Melaleuca cajuputi wood smoke aerosols did not exhibit similar pattern with CPI obtained close to one. The results obtained also indicated that burning of these wood resulted in formation of PAHs compounds in their smoke aerosols with predominance of three to four rings PAHs over the two, five and lesser of six rings PAHs. PAH diagnostic ratios calculated except for Flan/(Flan+Py) and Indeno/(Indeno+BgP) were consistent with the ratios suggested for wood combustion source as reported in literatures. In the case of the latter, two diagnostic ratios, the values were generally lower than the range normally reported for wood combustion.
Hydrocarbon is a light-non aqueous phase liquid or known as LNAPL. It poses environmental hazard if accidentally spilled out into the soil and water systems as a result of its insoluble nature in water. LNAPL component infiltrates into soil through pore spaces and afloat at the top of groundwater level. Some of this hydrocarbon would trap and clog within the voids, difficult to remove and costly to clean. The occurence of hydrocarbon in the soil definitely degraded the behaviour of soils in terms of engineering properties. This study aimed to investigate the engineering properties of oil-contaminated soil for two different residual soils originally developed from in-situ weathering of granitic and metasedimentary rocks. The physical characterisations of the soil were determined including particle size distribution, specific gravity test and x-ray diffraction (XRD). The engineering parameters for the contaminated and uncontaminated soils were Atterberg limits, compaction and soil shear strength (UU tests). The amounts of hydrocarbon added to soil were varied at 0%, 4%, 8%, 12% and 16% of dried weigth of soil samples. The results from the particle size distribution analysis showed that residual soil from granitic rock comprises of 38% sand, 33% silt and 4% clay while metasedimentary soil consists of 4% sand, 43% silt dan 29% clay. The mean values of specific gravity for the granitic and metasedimentary soils were 2.56 and 2.61, respectively. The types of minerals present in granitic soil sample were quartz, kaolinite and gibbsite while metasedimentary soil consists of quartz and kaolinite. The Atterberg limits value decreased as a result of increasing amount of added hydrocarbon into the soil. A similar behaviouir was observed with the values of maximum dry density and optimum water content with increasing hydrocarbon content. The overall unconsolidated undrained shear strength, Cu showed a decreasing trend with the increase in hydrocarbon content.
Bioremediation of crude oil using biostimulation and/or bioaugmentation was done by simulation study in the green house under uncontrolled environment temperature. In this study, the soil with indigenous microbes was spiked with Tapis crude oil at 200 g/kg. The microbial density of the amended soils was augmented by addition of fresh inoculum of microbial consortium which consist of Pseudomonas aeruginosa UKMP-14T, Acinetobacter baumannii UKMP-12T and seed culture two strains of fungi, Trichoderma virens UKMP-1M and Trichoderma virens UKMP-2M at ratio 1:1:1:1 (v/w). The amendment soil was added with 20% (v/w) of standardize consortium inoculum, 20% (w/w) of dried empty fruit bunch (EFB) and the effect of EFB was compared with 0.7% commercial fertilizer (v/w) which contain NPK (8:8:1). Soil with indigenous microbes was used as a control. Results showed total petroleum hydrocarbon (TPH) degradation for treatment added with NPK fertilizer was 70.36%, addition with EFB bulking agent 68.86% and addition of both NPK and EFB was 100% at day 30 of incubation. The control plot, 62% of TPH degradation was achieved after 30 days incubation.
Four species of bacteria, Acinetobacter lwoffii, Aeromonas hydrophila, Pseudomonas aeruginosa and Pseudomonas putida, were isolated from soil contaminated with hydrocarbons and selected for the determination of growth requirements and the ability to degrade petroleum hydrocarbon. The bacteria were grown in mineral salt medium (MSM) supplemented with two types of crude oil, either Sumandak or South Angsi at 1% (v/v) concentration. The optimum pH for growth of A. hydrophila and P. aeruginosa was 6.5 when grown with Sumandak and South Angsi oil. For A. lwoffii and P. putida the optimum pH for growth with Sumandak and South Angsi oil was 6.5 or 7.0, respectively. The growth of P. aeruginosa was the highest in MSM when supplemented with 1% South Angsi oil and 0.5% tryptone at pH 6.5 while, in Sumandak oil the growth was the highest when yeast extract was added. Gas chromatography analysis showed that the South Angsi crude oil components of C12 to C25 were more extensively degraded by A. lwoffii after 24 h of incubation compared to the other bacteria over the same period.
This study evaluates the effects of subcritical hydrothermal treatment on palm oil mill effluent (POME) and its concomitant formations of solid hydrochar, liquid product and gaseous product. The reactions were carried out at temperatures ranged 493 K-533 K for 2 h. The highest reduction of chemical oxygen demand (COD) and biochemical oxygen demand (BOD) were 58.8% and 62.5%, respectively, at 533 K. In addition, the removal of total suspended solids (TSS) achieved up to 99%, with the pH of POME reaching 6 from the initial pH 4. The gas chromatography coupled with mass spectroscopy (GC-MS) analysis showed that the fresh POME contained n-Hexadecanoic acid as the dominant component, which gradually reduced in the liquid product in the reaction with increased temperature, in addition to the attenuation of carboxyl compounds and elevation of phenolic components. The gaseous products contained CO2, CO, H2, and C3 - C6 hydrocarbons. Traces of CH4 were only found at 533 K. CO2 is the dominant species, where the highest of 3.99 vol% per 500 mL working volume of POME recorded at 533 K. The solid hydrochars showed negligible morphological changes across the reaction temperature. The O/C atomic ratio of the hydrochar range from 0.157 to 0.379, while the H/C atomic ratio was in the range from 0.930 to 1.506. With the increase of treatment temperature, the higher heating value (HHV) of the hydrochar improved from 24.624 to 27.513 MJ kg-1. The characteristics of hydrochar make it a fuel source with immense potential. POME decomposed into water-soluble compounds, followed by deoxygenation (dehydration and decarboxylation) in producing hydrochar with lower oxygen content and higher aromatic compounds in the liquid product. Little gaseous hydrocarbons were produced due to subcritical hydrothermal gasification at low temperature.
Flexible plastic packaging waste causes serious environmental issues due to challenges in recycling. This study investigated the conversion of flexible plastic packaging waste with 11.8 and 27.5 wt.% polyethylene terephthalate (PET) (denoted as PET-12 and PET-28, respectively) into oil and multi-walled carbon nanotubes (MWCNTs). The mixtures were initially pyrolyzed and the produced volatiles were processed over 9.0 wt.% Fe2O3 supported on ZSM-5 (400 °C) to remove oxygenated hydrocarbons (catalytic cracking of terephthalic and benzoic acids) that deteriorate oil quality. The contents of oxygenated hydrocarbons were decreased in oil from 4.6 and 9.4 wt.% per mass of PET-12 and PET-28, respectively, to undetectable levels. After catalytic cracking, the oil samples had similar contents of gasoline, diesel and heavy oil/wax fractions. The non-condensable gas was converted into MWCNTs over 0.9 wt.% Ni supported on CaCO3 (700 °C). The type of plastic packaging influenced the yields (2.4 and 1.5 wt.% per mass of PET-12 and PET-28, respectively) and the properties of MWCNTs due to the differences in gas composition. Regarding the electrocatalytic application, both MWCNTs from PET-12 and PET-28 outperformed commercial MWCNTs and Pt-based electrodes during oxygen evolution reaction, suggesting that MWCNTs from flexible plastic packaging can potentially replace conventional electrode materials.
In this study, the treatment of poultry slaughterhouse wastewater (PSW) was evaluated using two new down-flow high-rate anaerobic bioreactor systems (HRABS), including the down-flow expanded granular bed reactor (DEGBR) and the static granular bed reactor (SGBR). These two bioreactors have demonstrated a good performance for the treatment of PSW with removal percentages of the biochemical oxygen demand (BOD5), the chemical oxygen demand (COD), and fats, oil, and grease (FOG) exceeding 95% during peak performance days. This performance of down-flow HRABS appears as a breakthrough in the field of anaerobic treatment of medium to high-strength wastewater because down-flow anaerobic bioreactors have been neglected for the high-rate anaerobic treatment of such wastewater due to the success of up-flow anaerobic reactors such as the UASB and the EGSB as a result of the granulation of a consortium of anaerobic bacteria required for efficient anaerobic digestion and biogas production. Hence, to promote the recourse to such technologies and provide further explanation to their performance, this study approached the kinetic analysis of these two down-flow HRABS using the modified Stover-Kincannon and the Grau second-order multi-component substrate models. From a comparison between the two models investigated, the modified Stover-Kincannon model provided the best prediction for the concentration of the substrate in the effluent from the two HRABS. This analysis led to the determination of the kinetic parameters of the two models that can be used for the design of the two HRABS and the prediction of the performance of the SGBR and DEGBR. The kinetic parameters determined using the Modified Stover-Kincannon were Umax = 40.5 gCOD/L.day and KB = 47.3 gCOD/L.day for the DEGBR and Umax = 33.6 gCOD/L.day and KB = 44.9 gCOD/L.day for the SGBR; while, using the Grau second-order model, the kinetic models determined were a = 0.058 and b = 1.112 for the DEGBR and a = 0.135 and b = 1.33 for the SGBR.
A solid phase extraction (SPE) method has been developed using a newly synthesized titanium (IV) butoxide-cyanopropyltriethoxysilane (Ti-CNPrTEOS) sorbent for polar selective extraction of aromatic amines in river water sample. The effect of different parameters on the extraction recovery was studied using the SPE method. The applicability of the sorbents for the extraction of polar aromatic amines by the SPE was extensively studied and evaluated as a function of pH, conditioning solvent, sample loading volume, elution solvent and elution solvent volume. The optimum experimental conditions were sample at pH 7, dichloromethane as conditioning solvent, 10 mL sample loading volume and 5 mL of acetonitrile as the eluting solvent. Under the optimum conditions, the limit of detection (LOD) and limit of quantification (LOQ) for solid phase extraction using Ti-CNPrTEOS SPE sorbent (0.01-0.2; 0.03-0.61 µg L(-1)) were lower compared with those achieved using Si-CN SPE sorbent (0.25-1.50; 1.96-3.59 µg L(-1)) and C18 SPE sorbent (0.37-0.98; 1.87-2.87 µg L(-1)) with higher selectivity towards the extraction of polar aromatic amines. The optimized procedure was successfully applied for the solid phase extraction method of selected aromatic amines in river water, waste water and tap water samples prior to the gas chromatography-flame ionization detector separation.
The spatial distribution of 19 polycyclic aromatic hydrocarbons (tPAHs) was quantified in aquacultures located in intertidal mudflats of the west coast of Peninsular Malaysia in order to investigate bioaccumulation of PAH in blood cockles, Anadara granosa (A. granosa). Fifty-four samples from environmental matrices and A. granosa were collected. The sampling locations were representative of a remote area as well as PAH-polluted areas. The relationship of increased background levels of PAH to anthropogenic PAH sources in the environment and their effects on bioaccumulation levels of A. granosa are investigated in this study. The levels of PAH in the most polluted station were found to be up to ten-fold higher than in remote areas in blood cockle. These high concentrations of PAHs reflected background contamination, which originates from distant airborne and waterborne transportation of contaminated particles. The fraction and source identification of PAHs, based on fate and transport considerations, showed a mix of petrogenic and pyrogenic sources. The relative biota-sediment accumulation factors (RBSAF), relative bioaccumulation factors from filtered water (RBAFw), and from suspended particulate matter (SPM) (RBAFSP) showed higher bioaccumulations of the lower molecular weight of PAHs (LMWs) in all stations, except Kuala Juru, which showed higher bioaccumulation of the higher molecular weight of PAHs (HMWs). Calculations of bioaccumulation factors showed that blood cockle can accumulate PAHs from sediment as well as water samples, based on the physico-chemical characteristics of habitat and behaviour of blood cockles. Correlations among concentrations of PAHs in water, SPM, sediment and A. granosa at the same sites were also found. Identification of PAH levels in different matrices showed that A. granosa can be used as a good biomonitor for LMW of PAHs and tPAHs in mudflats. Considering the toxicity and carcinogenicity of PAHs, the bioaccumulation by blood cockles are a potential hazard for both blood cockles and their consumers.
A study on the quality of water abstracted for potable use was conducted in the Selangor River basin from November 2008 to July 2009. Seven sampling sites representing the intake points of water treatment plants in the basin were selected to determine the occurrence and level of 15 organochlorine pesticides (OCPs), six phthalate esters (PAEs) and bisphenol A (BPA). Results indicated OCPs were still detected regularly in 66.1 % of the samples with the Σ(15)OCPs ranging from 0.6-25.2 ng/L. The first data on PAEs contamination in the basin revealed Σ(6)PAEs concentrations were between 39.0 and 1,096.6 ng/L with a median concentration of 186.0 ng/L while BPA concentration ranged from <1.2 to 120.0 ng/L. Although di-n-butyl phthalate was detected in all the samples, concentrations of di-ethyl(hexyl)phthalate were higher. Sampling sites located downstream recorded the highest concentrations, together with samples collected during the dry season. Comparison of the detected contaminants with the Department of Environment Water Quality Index (DOE-WQI) showed some agreement between the concentration and the current classification of stream water. While the results suggest that the sites were only slightly polluted and suitable to be used as drinking water source, its presence is cause for concern especially to the fragile firefly "Pteroptyx tener" ecosystem located further downstream.
Increasing urbanization and changes in land use in Langat river basin lead to adverse impacts on the environment compartment. One of the major challenges is in identifying sources of organic contaminants. This study presented the application of selected chemometric techniques: cluster analysis (CA), discriminant analysis (DA), and principal component analysis (PCA) to classify the pollution sources in Langat river basin based on the analysis of water and sediment samples collected from 24 stations, monitored for 14 organic contaminants from polycyclic aromatic hydrocarbons (PAHs), sterols, and pesticides groups. The CA and DA enabled to group 24 monitoring sites into three groups of pollution source (industry and urban socioeconomic, agricultural activity, and urban/domestic sewage) with five major discriminating variables: naphthalene, pyrene, benzo[a]pyrene, coprostanol, and cholesterol. PCA analysis, applied to water data sets, resulted in four latent factors explaining 79.0% of the total variance while sediment samples gave five latent factors with 77.6% explained variance. The varifactors (VFs) obtained from PCA indicated that sterols (coprostanol, cholesterol, stigmasterol, β-sitosterol, and stigmastanol) are strongly correlated to domestic and urban sewage, PAHs (naphthalene, acenaphthene, pyrene, benzo[a]anthracene, and benzo[a]pyrene) from industrial and urban activities and chlorpyrifos correlated to samples nearby agricultural sites. The results demonstrated that chemometric techniques can be used for rapid assessment of water and sediment contaminations.
Soil contamination by hydrocarbons, especially by used lubricating oil, is a growing problem in developing countries, which poses a serious threat to the environment. Phytoremediation of these contaminated soils offers environmental friendly and a cost effective method for their remediation. Hibiscus cannabinus was studied for the remediation of soil contaminated with 2.5 and 1% used lubricating oil and treated with organic wastes [banana skin (BS), brewery spent grain (BSG) and spent mushroom compost (SMC)] for a period of 90 days under natural conditions. Loss of 86.4 and 91.8% used lubricating oil was recorded in soil contaminated with 2.5 and 1% oil and treated with organic wastes respectively at the end of 90 days. However, 52.5 and 58.9% oil loss was recorded in unamended soil contaminated with 2.5 and 1% oil, respectively. The plant did not accumulate hydrocarbon from the soil but shows appreciable accumulation of Fe and Zn in the root and stem of H. cannabinus at the end of the experiment. The first order kinetic rate of uptake of Fe and Zn in H. cannabinus was higher in organic wastes amendment treatments compared to the unamended treatments, which are extremely low. The results of this study suggest that H. cannabinus has a high potential for remediation of hydrocarbon and heavy metal contaminated soil.
Laccases are industrially attractive enzymes and their applications have expanded to the field of bioremediation. The challenge of today's biotechnology in enzymatic studies is to design enzymes that not only have a higher activity but are also more stable and could fit well with the condition requirements. Laccases are known to oxidize non-natural substrates like polycyclic aromatic hydrocarbons (PAHs). We suppose by increasing the hydrophobicity of laccase, it would increase the chance of the enzyme to meet the hydrophobic substrates in a contamination site, therefore increasing the bioremediation efficacy of PAHs from environment. In this attempt, the applications of evolutionary trace (ET), molecular surface accessibility and hydrophobicity analysis on laccase sequences and laccase's crystal structure (1KYA) are described for optimal design of an enzyme with higher hydrophobicity. Our analysis revealed that Q23A, Q45I, N141A, Q237V, N262L, N301V, N331A, Q360L and Q482A could be promising exchanges to be tested in mutagenesis experiments.