Displaying publications 241 - 260 of 501 in total

Abstract:
Sort:
  1. Khanahmadi S, Yusof F, Chyuan Ong H, Amid A, Shah H
    J Biotechnol, 2016 Aug 10;231:95-105.
    PMID: 27184429 DOI: 10.1016/j.jbiotec.2016.05.015
    Enzymatic reactions involving lipases as catalyst in transesterification can be an excellent alternative to produce environmental-friendly biodiesel. In this study, lipase extracted from Cocoa Pod Husk (CPH) and immobilized through cross linked enzyme aggregate (CLEA) technology catalysed the transesterification of Jatropha curcas oil successfully. Face centered central composite design (FCCCD) under response surface methodology (RSM) was used to get the optimal conditions of 3% (w/w) enzyme loading, 4h reaction time and 1:6 oil/ethanol ratio to achieve the highest conversion of free fatty acid and glycerides into biodiesel (93%). The reusability of CLEA-lipase was tested and after seven cycles, the conversion percentage reduced to 58%. The results revealed that CLEA lipase from CPH is a potential catalyst for biodiesel production.
    Matched MeSH terms: Seeds/enzymology*
  2. Thangavelu L, Balusamy SR, Shanmugam R, Sivanesan S, Devaraj E, Rajagopalan V, et al.
    Regul Toxicol Pharmacol, 2020 Jun;113:104640.
    PMID: 32169672 DOI: 10.1016/j.yrtph.2020.104640
    Acacia catechu (A. catechu) or Khair (Hindi) is used in several herbal preparations in the Ayurvedic system of medicine in India. Traditionally, this drug is beneficial against several gastrointestinal and stomach related ailments, and leprosy. The present investigation was carried out to evaluate the sub-acute oral toxicity of the ethanolic extract of A. catechu seeds in Wistar albino rats. Results obtained from the quantitative chemical analysis of A. catechu seed extract were compared with commercially available standards. A. catechu seed extract was administered orally at the doses of 250, 500 and 1000 mg/kg b.w. daily for 28 days. General behavior, bodyweight and mortality were examined during the entire study period. At the end of 28 days, hematological and biochemical parameters along with the relative organ weights were determined. It was observed that the extract did not induce death or any significant changes in the body weight, relative weight of vital organs and in hematological parameters for up to a dose of 1000 mg/kg. The oral administration of the plant extract did not produce any significant changes in the levels of glucose. In addition, there were no significant changes in the activity of both hepatotoxic and nephrotoxic marker enzymes in the serum. Oral administration of A. catechu also did not produce any significant changes in the levels of oxidative markers. Furthermore, the findings from the biochemical studies were, well corroborated with the histological findings.
    Matched MeSH terms: Seeds/chemistry*
  3. Teoh SL, Lai NM, Vanichkulpitak P, Vuksan V, Ho H, Chaiyakunapruk N
    Nutr Rev, 2018 04 01;76(4):219-242.
    PMID: 29452425 DOI: 10.1093/nutrit/nux071
    Context: Chia seed is a popular dietary supplement, taken mainly for its high content of alpha-linolenic acid, vegetable protein, and dietary fiber, yet information about its clinical effects is lacking.

    Objective: This review aims to summarize the clinical evidence regarding the use of chia seed for a wide variety of health conditions.

    Data Sources: A number of databases, including PubMed and Embase, were searched systematically.

    Study Selection: Randomized controlled trials that assessed the clinical effects of chia seed consumption in human participants were included. The quality of trials was assessed using the Cochrane Risk of Bias Tool.

    Data Extraction: Data on study design, blinding status, characteristics of participants, chia seed intervention, comparator, clinical assessment, duration of intake, interval of assessment, and study funding status were extracted. Meta-analysis was performed.

    Results: Twelve trials were included. Participants included healthy persons, athletes, diabetic patients, and individuals with metabolic syndrome. Pooling of results showed no significant differences except for the following findings of subgroup analysis at higher doses of chia seed: (1) lower postprandial blood glucose level (mean difference [MD] of -33.95 incremental area under the curve [iAUC] [mmol/L × 2 h] [95%CI, -61.85, -6.05] and -51.60 iAUC [mmol/L × 2 h] [95%CI, -79.64, -23.56] at medium doses and high doses, respectively); (2) lower high-density lipoprotein in serum (MD of -0.10 mmol/L [95%CI, -0.20, -0.01]); and (3) lower diastolic blood pressure (MD of -7.14 mmHg [95%CI, -11.08, -3.19]). The quality of all evidence assessed using the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach was low or very low. All trials employed only surrogate markers as outcomes.

    Conclusions: Future trials with improved methodological quality, well-described clinical events, and validated surrogate markers as outcomes are needed to support the potential health benefits of chia seed consumption.

    Systematic Review Registration: PROSPERO registration no. CRD42015029990.

    Matched MeSH terms: Seeds*
  4. Mohammed NJ, Othman NK, Taib MFM, Samat MH, Yahya S
    Molecules, 2021 Jun 09;26(12).
    PMID: 34207914 DOI: 10.3390/molecules26123535
    Extracts from plant materials have great potential as alternatives to inorganic corrosion inhibitors, which typically have harmful consequences. Experimental and theoretical methodologies studied the effectiveness of agricultural waste, namely, date palm seed extract as a green anti-corrosive agent in 0.5 M hydrochloric acid. Experimental results showed that immersion time and temperature are closely related to the effectivity of date palm seed as a corrosion inhibitor. The inhibition efficiency reduced from 95% to 91% at 1400 ppm when the immersion time was increased from 72 h to 168 h. The experimental results also indicated that the inhibition efficiency decreased as the temperature increased. The presence of a protective layer of organic matter was corroborated by scanning electron microscopy. The adsorption studies indicated that date palm seed obeyed Langmuir adsorption isotherm on the carbon steel surface, and Gibbs free energy values were in the range of -33.45 to -38.41 kJ·mol-1. These results suggested that the date palm seed molecules interacted with the carbon steel surface through mixture adsorption. Theoretical calculations using density functional theory showed that the capability to donate and accept electrons between the alloy surface and the date palm seed inhibitor molecules is critical for adsorption effectiveness. The HOMO and LUMO result indicated that the carboxyl (COOH) group and C=C bond were the most active sites for the electron donation-acceptance type of interaction and most auxiliary to the adsorption process over the Fe surface.
    Matched MeSH terms: Seeds/chemistry*
  5. Norhaizan ME, Ng SK, Norashareena MS, Abdah MA
    Malays J Nutr, 2011 Dec;17(3):367-75.
    PMID: 22655458 MyJurnal
    Phytic acid (PA) has been shown to have positive nutritional benefits. There are also claims that it is able to prevent cancer through its antioxidant capability. This study investigated antioxidant activity and cytotoxic effect of PA extracted from rice bran against selected cancer cell lines (i.e. ovarian, breast and liver cancer).
    Matched MeSH terms: Seeds/chemistry*
  6. Nyam KL, Teh YN, Tan CP, Kamariah L
    Malays J Nutr, 2012 Aug;18(2):265-74.
    PMID: 24575672 MyJurnal
    In order to overcome the stability problems of oils and fats, synthetic antioxidants such as butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and tert-butyl hydroquinone (TBHQ) have widespread use as food additives in many countries. Recent reports reveal that these compounds may be implicated in many health risks, including cancer and carcinogenesis. Hence, there is a move towards the use of natural antioxidants of plant origin to replace these synthetic antioxidants.
    Matched MeSH terms: Seeds/chemistry*
  7. Mustafa MR, Hadi AH
    Toxicon, 1990;28(10):1237-9.
    PMID: 2264070
    Crude glycoside extracts from the plant, Sarcolobus globosus, were tested on the rat phrenic nerve-diaphragm, chick biventer cervicis and frog rectus abdominis preparations. Nerve-stimulated twitches were inhibited by the extract. The muscle paralysis was not similar to that by curare-like blockers as it was not reversed by neostigmine or by a tetanus. Although contractures to acetylcholine or carbachol were not affected by 0.6 mg/ml of the extract, higher concentration of the extracts (3 mg/ml) depressed the log dose-response curve of acetylcholine and carbachol. The results suggest that the neuromuscular blocking effect of the extracts is either dose-dependent or due to a mixture of toxins with presynaptic or postsynaptic actions.
    Matched MeSH terms: Seeds*
  8. Sahgal G, Ramanathan S, Sasidharan S, Mordi MN, Ismail S, Mansor SM
    Trop Biomed, 2009 Dec;26(3):274-9.
    PMID: 20237441 MyJurnal
    The present study was designed to evaluate the antibacterial activities of Swietenia mahagoni crude methanolic (SMCM) seed extract. The antimicrobial activity of the oily extract against Gram-positive, Gram-negative, yeast and fungus strains was evaluated based on the inhibition zone using disc diffusion assay, minimal inhibition concentration (MIC) and minimal bactericidal concentration (MBC) values. The crude extract was subjected to various phytochemicals analysis. The demonstrated qualitative phytochemical tests exhibited the presences of common phytocompounds including alkaloids, terpenoids, antraquinones, cardiac glycosides, saponins, and volatile oils as major active constituents. The SMCM seed extract had inhibitory effects on the growth of Candida albicans, Staphylococcus aureus, Pseudomonas aeroginosa, Streptococcus faecalis and Proteus mirabillase and illustrated MIC and MBC values ranging from 25 mg/ml to 50 mg/ml.
    Matched MeSH terms: Seeds/chemistry
  9. Babar ZM, Jaswir I, Tareq AM, Ali Reza ASM, Azizi WM, Hafidz M, et al.
    Nat Prod Res, 2021 Aug;35(16):2793-2798.
    PMID: 31578877 DOI: 10.1080/14786419.2019.1667348
    The WSE is a highly polar, gummy and mucilaginous bioactive content of the Nigella sativa (L.) seeds. This study reports the anxiolytic and anti-inflammatory effects of WSE investigated using Elevated Plus Maze (EPM) and Hole-Board Test (HBT) in adult mice and human RBCs haemolysis inhibition and protein denaturation respectively. The oral WSE treatment (100 & 200 mg/kg b.w/day) for 72 hours has exhibited slightly better anxiolytic effect (p 
    Matched MeSH terms: Seeds/chemistry
  10. Li KS, Ali MA, Muhammad II, Othman NH, Noor AM
    J Oleo Sci, 2018 May 01;67(5):497-505.
    PMID: 29628486 DOI: 10.5650/jos.ess17203
    The impact of microwave roasting on the thermooxidative degradation of perah seed oil (PSO) was evaluated during heating at a frying temperature (170°C). The roasting resulted significantly lower increment of the values of oxidative indices such as free acidity, peroxide value, p-anisidine, total oxidation (TOTOX), specific extinctions and thiobarbituric acid in oils during heating. The colour L* (lightness) value dropped gradually as the heating time increased up to 12 h, whereas a*(redness) and b* (yellowness) tended to increase. The viscosity and total polar compound in roasted PSO was lower as compared to that in unroasted one at each heating times. The tocol retention was also high in roasted samples throughout the heating period. The relative contents of polyunsaturated fatty acids (PUFAs) were decreased to 94.42% and saturated fatty acids (SFAs) were increased to 110.20% in unroasted sample, after 12 h of heating. On the other hand, in 3 min roasted samples, the relative contents of PUFAs were decreased to 98.08% and of SFAs were increased to 103.41% after 12 h of heating. Outcome from analyses showed that microwave roasting reduced the oxidative deteriorations of PSO during heating.
    Matched MeSH terms: Seeds*
  11. Cheong AM, Tan CP, Nyam KL
    J Food Sci, 2018 Oct;83(10):2457-2465.
    PMID: 30178877 DOI: 10.1111/1750-3841.14332
    Kenaf seed oil-in-water nanoemulsions (NANO) stabilized by sodium caseinate (SC), beta-cyclodextrin (β-CD), and Tween 20 (T20) have been optimized and shown to improve in vitro bioaccessibility and physicochemical stability in the previous study. The main objective of this study was to evaluate the stability of bioactive compounds and antioxidants in the NANO during storage at different temperatures (4 °C, 25 °C, and 40 °C). An evaluation of the antioxidant activities of each emulsifier showed that SC had good scavenging capability with 97.6% ABTS radical scavenging activity. Therefore, SC which was used as one of the main emulsifiers could further enhanced the antioxidant activity of NANO. At week 8 of storage, NANO that stored at 4 °C had maintained the best bioactive compounds stability and antioxidant activities with 90% retention of vitamin E and 65% retention of phytosterols. These results suggested that 4 °C would be the most suitable storage temperature for NANO containing naturally present vitamin E and phytosterols. From the accelerated storage results at 40 °C, NANO containing vitamin E and phytosterols had maintained half of its initial concentration until week 4 and week 2 of storage, which is equivalent to 16 weeks and 8 weeks of storage at room temperature, respectively.

    PRACTICAL APPLICATION: The results of this study provide a better understanding on the stability of bioactive compounds and antioxidant activities in oil-in-water nanoemulsions that stabilized by similar ternary emulsifiers during storage at different temperatures. In addition, this study could be used as a predictive model to estimate the shelf life of bioactive compounds encapsulated in the form of nanoemulsions.

    Matched MeSH terms: Seeds/chemistry
  12. Mohd Taha MD, Mohd Jaini MF, Saidi NB, Abdul Rahim R, Md Shah UK, Mohd Hashim A
    PLoS One, 2019;14(12):e0224431.
    PMID: 31841519 DOI: 10.1371/journal.pone.0224431
    Dieback disease caused by Erwinia mallotivora is a major threat to papaya plantation in Malaysia. The current study was conducted to evaluate the potential of endophytic lactic acid bacteria (LAB) isolated from papaya seeds for disease suppression of papaya dieback. Two hundred and thirty isolates were screened against E. mallotivora BT-MARDI, and the inhibitory activity of the isolates against the pathogen was ranging from 11.7-23.7 mm inhibition zones. The synergistic experiments revealed that combination of W. cibaria PPKSD19 and Lactococcus lactis subsp. lactis PPSSD39 increased antibacterial activity against the pathogen. The antibacterial activity was partially due to the production of bacteriocin-like inhibitory substances (BLIS). The nursery experiment confirmed that the application of bacterial consortium W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 significantly reduced disease severity to 19% and increased biocontrol efficacy to 69% of infected papaya plants after 18 days of treatment. This study showed that W. cibaria PPKSD19 and L. lactis subsp. lactis PPSSD39 are potential candidate as biocontrol agents against papaya dieback disease.
    Matched MeSH terms: Seeds/drug effects
  13. Nehdi IA, Sbihi HM, Tan CP, Al-Resayes SI, Rashid U, Al-Misned FA, et al.
    J Oleo Sci, 2020 May 02;69(5):413-421.
    PMID: 32281562 DOI: 10.5650/jos.ess19298
    Allium ampeloprasum L., commonly known as wild leek, is an edible vegetable that has been cultivated for centuries. However, no detailed studies have been undertaken to valorize A. ampeloprasum seed oil. This study aims to evaluate the physicochemical properties, chemical composition, and antioxidant activity of A. ampeloprasum seed oil. The seed oil content was found to be 18.20%. Gas chromatographymass spectrometry (GC-MS) showed that linoleic acid (71.65%) was the dominant acid, followed by oleic acid (14.11%) and palmitic acid (7.11%). A. ampeloprasum seed oil exhibited an oxidative stability of 5.22 h. Moreover, γ- and δ-tocotrienols were the major tocols present (79.56 and 52.08 mg/100 g oil, respectively). The total flavonoid content (16.64 µg CE /g oil) and total phenolic content (62.96 µg GAE /g oil) of the seed oil were also determined. The antioxidant capacity of the oil, as evaluated using the ABTS assay (136.30 µM TEAC/g oil), was found to be significant. These findings indicate that A. ampeloprasum seeds can be regarded as a new source of edible oil having health benefits and nutritional properties.
    Matched MeSH terms: Seeds/chemistry*
  14. Ong TS, Chu CC, Tan CP, Nyam KL
    J Oleo Sci, 2020;69(4):297-306.
    PMID: 32249259 DOI: 10.5650/jos.ess19250
    Plant seed oil is often incorporated into the cream emulsions to provide multifunctional effects on the skin. In the current study, pumpkin seed oil (PSO) was used to develop a stable oil-in-water emulsion. The study aimed to optimise PSO cream formulation and determine the synergistic effect of the PSO with vitamin E oil added. The physical properties, antioxidant activities and storage stability of the formulations were analysed. Besides, the synergistic effect of the best formulation was analysed based on α-tocopherol content using ultra-high performance liquid chromatography (UHPLC). The storage stability test was assessed upon storing at 25 ± 2°C and 40 ± 2°C for 12 weeks. The best formulation (20% PSO, vitamin E oil and beeswax) selected showed physically and microbiologically stable. The incorporation of vitamin E oil into the formulation produced with PSO was found to be compatible, as it showed a synergistic effect in the amount of α-tocopherol content (combination index (CI) = 0.98). Thus, PSO had shown its potency to be incorporated into the topical products with a promising potential in delivering additional properties that can nourish the skin.
    Matched MeSH terms: Seeds/chemistry*
  15. Amiruddin N, Chan PL, Azizi N, Morris PE, Chan KL, Ong PW, et al.
    Plant Cell Physiol, 2020 Apr 01;61(4):735-747.
    PMID: 31883014 DOI: 10.1093/pcp/pcz237
    Acyl-CoA-binding proteins (ACBPs) are involved in binding and trafficking acyl-CoA esters in eukaryotic cells. ACBPs contain a well-conserved acyl-CoA-binding domain. Their various functions have been characterized in the model plant Arabidopsis and, to a lesser extent, in rice. In this study, genome-wide detection and expression analysis of ACBPs were performed on Elaeis guineensis (oil palm), the most important oil crop in the world. Seven E. guineensis ACBPs were identified and classified into four groups according to their deduced amino acid domain organization. Phylogenetic analysis showed conservation of this family with other higher plants. All seven EgACBPs were expressed in most tissues while their differential expression suggests various functions in specific tissues. For example, EgACBP3 had high expression in inflorescences and stalks while EgACBP1 showed strong expression in leaves. Because of the importance of E. guineensis as an oil crop, expression of EgACBPs was specifically examined during fruit development. EgACBP3 showed high expression throughout mesocarp development, while EgACBP1 had enhanced expression during rapid oil synthesis. In endosperm, both EgACBP1 and EgACBP3 exhibited increased expression during seed development. These results provide important information for further investigations on the biological functions of EgACBPs in various tissues and, in particular, their roles in oil synthesis.
    Matched MeSH terms: Seeds/metabolism
  16. Muniandy K, Tan MH, Shehnaz S, Song BK, Ayub Q, Rahman S
    Planta, 2020 Feb 01;251(2):57.
    PMID: 32008119 DOI: 10.1007/s00425-020-03349-7
    MAIN CONCLUSION: The rice leaf mitochondrial DNA is  more methylated compared to the rice grain mitochondrial DNA. The old rice leaf mitochondrial DNA has also a higher methylation level than the young rice leaf mitochondrial DNA. The presence of DNA methylation in rice organelles has not been well characterized. We have previously shown that cytosine methylation of chloroplast DNA is different between leaf and grain, and varies between young and old leaves in rice. However, the variation in cytosine methylation of mitochondrial DNA is still poorly characterized. In this study, we have investigated cytosine methylation of mitochondrial DNA in the rice grain and leaf. Based on CpG, CHG, and CHH methylation analyses, the leaf mitochondrial DNA was found to be  more methylated compared to the grain mitochondrial DNA. The methylation of the leaf mitochondrial DNA was also higher in old compared to young leaves. Differences in methylation were observed at different cytosine positions of the mitochondrial DNA between grain and leaf, although there were also positions with a similar level of high methylation in all the tissues examined. The differentially methylated cytosine positions in rice mitochondrial DNA were observed mostly in the intergenic region and in some mitochondrial-specific genes involved in ATP production, transcription, and translation. The functional importance of cytosine methylation in the life cycle of rice mitochondria is still to be determined.
    Matched MeSH terms: Seeds/genetics*
  17. Zhang Y, Hu M, Zhu K, Wu G, Tan L
    Int J Biol Macromol, 2018 Feb;107(Pt B):1395-1405.
    PMID: 29017887 DOI: 10.1016/j.ijbiomac.2017.10.001
    Jackfruit is now receiving extensive attention as a new source of starch. However, jackfruit seeds are discarded as waste, although they are rich in starch. The functional properties of the starches were investigated from new Chinese jackfruit species. All the starches have a high amylose (26.56-38.34%) with a potential to become functional foods rich in resistant starch. The jackfruit starches varied from trigonal and tetragonal, round to semi-oval/bell shapes and showed significant variations in particle sizes (5.53-14.46μm). These variations led to significant differences in their functional properties, and significant correlations were found in their pasting, thermal, crystal and texture parameters. Hierarchical cluster analysis sorted the samples into three groups of 1) Malaysia 8 (M8) and ZhenZhu (ZZ); 2) Malaysia 2, Malaysia 3 and Malaysia 4, (M2, M3, M4); and 3) Xiangyinsuo 11, Xiangyinsuo 4, Xiangyinsuo 3 and Xiangyinsuo 2 (X11, X4, X3, X2). The first group could be used as food thickening or gelling agents. The second group could be applied in glutinous foods. The third group make them suitable for fillings in confectionery or weaning foods.
    Matched MeSH terms: Seeds/chemistry*
  18. Li KS, Ali A, Muhammad II
    Acta Sci Pol Technol Aliment, 2017 Jul-Sep;16(3):283-292.
    PMID: 29055976 DOI: 10.17306/J.AFS.0497
    BACKGROUND: Perah seed is one of the most underutilized oilseeds, containing high nutritional values and high percentage of α-linoleneic acid, which may have a high potential in food and pharmaceutical applica- tions. The main objective of this study was to evaluate the influence of microwave (MW) cooking on the proximate composition and antioxidant activity of perah seeds.

    METHODS: In this study, the proximate composition and amygdalin concentration of MW ir- radiated perah seeds were determined. The total phenolic content (TPC), Maillard reaction products (MRPs) and antioxidant activity of methanol (PME), 70% methanol in water (PMW), ethanol (PEE), 70% ethanol  in water (PEW) extracts and methanol extract of oil (PMO) were evaluated during MW cooking. The anti- oxidant activity was evaluated using multiple assays, namely DPPH radical scavenging activity, β-Carotene bleaching assay, and reducing power.

    RESULTS: Microwave cooking did not significantly increase crude lipid and carbohydrate content, and the amounts of other nutrients such as ash, crude protein and fibre remained almost unchanged. As evaluated  by HPLC, the amygdalin concentration in the seeds was reduced by MW cooking. The TPC, MRP and anti- oxidant activity of the solvent extracts of perah seeds increased significantly with increasing roasting time. Of all the extracts, PMW at all MW cooking times displayed the highest antioxidant effectiveness. However, thermal treatment significantly reduced the antioxidant properties of PMO. The values for TPC, MRP and antioxidant effectiveness of the samples were ranked in the following order: PMW > PEW > PME > PEE > PMO, in both control and microwaved samples.

    CONCLUSIONS: In determining the overall quality of the products, MW cooking time was found to be a critical factor. Solubilization of phenolic compounds and formation of MRPs during MW cooking could have caused the increase in antioxidant activity of the perah seeds.
    Matched MeSH terms: Seeds/chemistry*
  19. Lee HX, Ahmad F, Saad B, Ismail MN
    Prep Biochem Biotechnol, 2017 Nov 26;47(10):998-1007.
    PMID: 28857669 DOI: 10.1080/10826068.2017.1365250
    Date fruits are well known to be very nutritious. Nevertheless, the protein contents of the fruit, particularly the seed and flesh, are still understudied, largely due to their difficult physical characteristics. This study was conducted to compare three different protein extraction methods which were the trichloroacetic acid (TCA)-acetone (TCA-A), phenol (Phe), and TCA-acetone-phenol (TCA-A-Phe), and to perform proteomic analysis on date palm seed and flesh. Phe extraction method showed the highest protein yields for both seed (8.26 mg/g) and flesh (1.57 mg/g). Through sodium dodecyl sulfate-polyacrylamide gel electrophoresis, Phe, and TCA-A-Phe extraction methods were shown to be efficient in removing interfering compounds and gave well-resolved bands over a wide range of molecular weights. Following liquid chromatography-tandem mass spectrometry analysis, about 50-64% of extracted proteins were identified with known functions including those involved in glycolysis, Krebs cycle, defense, and storage. Phe protein extraction method was proven to be the optimal method for date flesh and seed.
    Matched MeSH terms: Seeds/chemistry*
  20. Cheong AM, Tan CP, Nyam KL
    Food Sci Technol Int, 2018 Jul;24(5):404-413.
    PMID: 29466882 DOI: 10.1177/1082013218760882
    Kenaf ( Hibiscus cannabinus L.) seed oil has been proven for its multi-pharmacological benefits; however, its poor water solubility and stability have limited its industrial applications. This study was aimed to further improve the stability of pre-developed kenaf seed oil-in-water nanoemulsions by using food-grade ternary emulsifiers. The effects of emulsifier concentration (1, 5, 10, 15% w/w), homogenisation pressure (16,000, 22,000, 28,000 psi), and homogenisation cycles (three, four, five cycles) were studied to produce high stability of kenaf seed oil-in-water nanoemulsions using high pressure homogeniser. Generally, results showed that the emulsifier concentration and homogenisation conditions had great effect ( p 
    Matched MeSH terms: Seeds/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links