METHOD: The meta-analysis included all studies that examined the effect of prebiotic, probiotic, and synbiotic supplements on one or more renal function parameters and had a control group. We searched July 1967 through to March 2016 MEDLINE, Scopus, and Google Scholar databases.
RESULTS: Of 437 studies, 13 were eligible for inclusion in the meta-analysis. GFR levels tended to be reduced; whereas creatinine levels increased in the intervention group compared with the placebo group, both in a non-significant manner. The pooled effect on BUN demonstrated a significant decline compared with the placebo group (MD, -1.72 mmol/L; 95% confidence interval [CI], -2.93 to -0.51; P = 0.005). Urea significantly decreased after intervention (-0.46 mmol/L; 95% CI, -0.60 to -0.32; P <0.0001). The UA levels significantly increased in the intervention group compared with the placebo group (12.28 µmol/L; 95% CI, 0.85-23.71; P = 0.035).
CONCLUSION: This study showed a significant increase in UA and a decrease in urea and BUN. The use of prebiotic, probiotic, and synbiotic supplements among those with compromised renal function or those at risk for renal failure should be limited until large-scale, well-designed randomized controlled trials prove the safety and efficacy of these supplements in improving renal function.
METHODS AND RESULTS: The anti-ageing mechanism of three probiotics strains Lactobacillus fermentum DR9, Lactobacillus paracasei OFS 0291 and L. helveticus OFS 1515 were evaluated on gastrocnemius muscle and tibia of d-galactose-induced ageing rats. Upon senescence induction, aged rats demonstrated reduced antioxidative genes CAT and SOD expression in both bone and muscle compared to the young rats (P
METHODS AND RESULTS: A total of 40 male Sprague-Dawley rats were assigned to one of five groups of varying diets as follows: standard diet, high fat diet (HFD), HFD supplemented with Lactobacillus casei strain Shirota, HFD supplemented with Bifidobacterium longum and HFD supplemented with a mixture of these two bacterial species. After 15 weeks of supplementation, the animals were examined for changes in body weight, body fat, total count of bacteria in fecal, blood serum lipid profile, leptin, adiponectin and inflammatory biomarkers. Histological analysis of the liver and adipose tissue was performed and the hepatic mRNA expression levels of genes related to lipid metabolism were measured. It was found that probiotic supplementation of either B. longum or a mixture of B. longum and LcS bacteria significantly reduced weight and triglycerides in the HFD groups. Supplementation of B. longum bacteria showed better results in terms of modulating leptin level, fat mass, adipocyte size and lipoprotein lipase expression, as well as increasing adiponectin and peroxisome proliferator-activated receptors-γ expression compared to dual species of bacteria. No significant differences were observed in the total count of fecal bacteria, glucose and inflammatory biomarker levels between supplemented groups.
CONCLUSIONS: B. longum supplementation in obesity was more beneficial in metabolic profile changes than the mixture species.