METHODS: Warfarin relies on regular monitoring of International Normalized Ratio which is a standardized test to measure prothrombin time and appropriate dose adjustment. Pharmacometabonomics is a novel scientific field which deals with identification and quantification of the metabolites present in the metabolome using spectroscopic techniques such as Nuclear Magnetic Resonance (NMR). Pharmacometabonomics helps to indicate perturbation in the levels of metabolites in the cells and tissues due to drug or ingestion of any substance. NMR is one of the most widely-used spectroscopic techniques in metabolomics because of its reproducibility and speed.
RESULTS: There are many factors that influence the metabolism of warfarin, making changes in drug dosage common, and clinical factors like drug-drug interactions, dietary interactions and age explain for the most part the variability in warfarin dosing. Some studies have showed that pharmacogenetic testing for warfarin dosing does not improve health outcomes, and around 26% of the variation in warfarin dose requirements remains unexplained yet.
CONCLUSION: Many recent pharmacometabonomics studies have been conducted to identify novel biomarkers of drug therapies such as paracetamol, aspirin and simvastatin. Thus, a technique such as NMR based pharmacometabonomics to find novel biomarkers in plasma and urine might be useful to predict warfarin outcome.
METHODS: Subjects (n = 121) received oral repaglinide (4 mg). Blood samples were taken at 0, 30, 60, 120, 180 and 240 min and serum concentrations of repaglinide were determined using high-performance liquid chromatography. Subjects were also genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) for CYP3A4*4, *5 and*18 and by an allele-specific multiplex PCR for CYP2C8*2, *3, *4 and *5 alleles.
RESULTS: The allele frequencies of CYP2C8*1, *2, *3, *4 and *5 were 95.04, 0.40, 0.40, 0 and 4.13%, respectively. The frequencies of the CYP3A4*1, *4, *5 and *18 alleles were 97.93, 0, 0 and 2.07%, respectively. CYP2C8 and CYP3A4 genotypes were not significantly associated with repaglinide's blood glucose-lowering effect. However, the CYP3A4 genotype significantly influenced some of repaglinide's pharmacokinetics, where the mean elimination rate constant was 44.0% lower (p = 0.04) and the mean half-life was 33.8% higher (p = 0.04) in subjects with the CYP3A4*1/*18 genotype as compared to those with the normal CYP3A4*1/*1 genotype. This result confirms that CYP3A4 plays a large role in metabolizing repaglinide.
CONCLUSION: Genetic polymorphisms of CYP3A4, specifically CYP3A4*18, play a major role in contributing to the interindividual variability in repaglinide's pharmacokinetics.