Displaying publications 241 - 260 of 1015 in total

Abstract:
Sort:
  1. Lim SY, Lim JL, Ahmad-Annuar A, Lohmann K, Tan AH, Lim KB, et al.
    Neurodegener Dis, 2020;20(1):39-45.
    PMID: 32580205 DOI: 10.1159/000508131
    Pathogenic and risk variants in the LRRK2 gene are among the main genetic contributors to Parkinson's disease (PD) worldwide, and LRRK2-targeted therapies for patients with PARK-LRRK2are now entering clinical trials. However, in contrast to the LRRK2 G2019S mutation commonly found in Caucasians, North-African Arabs, and Ashkenazi Jews, relatively little is known about other causative LRRK2 mutations, and data on genotype-phenotype correlations are largely lacking. This report is from an ongoing multicentre study in which next-generation sequencing-based PD gene panel testing has so far been conducted on 499 PD patients of various ethnicities from Malaysia. We describe 2 sisters of Chinese ancestry with PD who carry the R1441C mutation in LRRK2 (which in Asians has been reported in only 2 Chinese patients previously), and highlight interesting clinical observations made over a decade of close follow-up. We further explored the feasibility of using a brief, expert-administered rating scale (the Clinical Impression of Severity Index; CISI-PD) to capture data on global disease severity in a large (n = 820) unselected cohort of PD patients, including severely disabled individuals typically excluded from research studies. All patients in this study were managed and evaluated by the same PD neurologist, and these data were used to make broad comparisons between the monogenic PD cases versus the overall "real world" PD cohort. This report contributes to the scarce literature on R1441C PARK-LRRK2, offering insights into natural history and epidemiological aspects, and provides support for the application of a simple and reliable clinical tool that can improve the inclusion of under-represented patient groups in PD research.
    Matched MeSH terms: Mutation*
  2. Jankovic L, Efremov GD, Petkov G, Kattamis C, George E, Yang KG, et al.
    Br J Haematol, 1990 May;75(1):122-6.
    PMID: 2375910
    In an ongoing effort to identify point mutations causing beta-thalassaemia, we have found two previously unreported mutations which are located in the Poly A site of the beta-globin gene. The screening programme used amplified DNA and dot-blot hybridization with several 32P-labelled oligonucleotide probes. DNA samples which remained unidentified by this methodology were subjected to sequencing with 32P-labelled primers and modified T7 DNA polymerase. The newly discovered mutations were confirmed by the dot-blot hybridization technique. One type concerned an AATAAA----AATGAA mutation in the polyadenylation site and was found in one family from Yugoslavia (including one patient with the C----T mutation at codon 29 in trans), one from Bulgaria (the patient had the G----A mutation at IVS-I-110 in trans), and one from Greece (this patient had the C----G mutation at IVS-II-745 in trans). Haematological data for three simple heterozygotes suggested a rather mild beta(+)-thalassemia. The second type involved an AATAAA----AATAGA mutation and was found in one family from Malaysia. The propositus had the beta E mutation on the other chromosome, was originally diagnosed as mild Hb E-beta(+)-thalassaemia, and had Hb A and Hb E percentages which were nearly the same.
    Matched MeSH terms: DNA Mutational Analysis; Mutation*
  3. Aslam S, Yee VC, Narayanan S, Duraisamy G, Standen GR
    Br J Haematol, 1997 Aug;98(2):346-52.
    PMID: 9266932
    Molecular analysis has been performed on a Malaysian patient with a severe bleeding disorder due to factor XIII(A) subunit deficiency. Total mRNA was isolated from the patient's leucocytes and four overlapping segments corresponding to the entire coding region of the A subunit cDNA were amplified by RT-PCR. The cDNA segments amplified efficiently and were of expected size. Direct sequencing of the complete reading frame revealed a single homozygous base change (nt 1327G-T) in exon 10 corresponding to a missense mutation, Val414Phe, in the catalytic core domain of the A subunit monomer. The mutation eliminates a BsaJ1 restriction site and family screening showed that both parents were heterozygous for the defect. The base substitution was absent in 55 normal individuals. Val414 is a highly conserved residue in the calcium-dependent transglutaminase enzyme family. Computer modelling based on 3D crystallographic data predicts that the bulky aromatic side chain of the substituted phenylalanine residue distorts protein folding and destabilizes the molecule. In addition, conformation changes in the adjacent catalytic and calcium binding regions of the A subunit are likely to impair the enzymatic activity of any protein synthesized.
    Matched MeSH terms: Mutation/genetics*
  4. Low VL, Vinnie-Siow WY, Lim Y AL, Tan TK, Leong CS, Chen CD, et al.
    Trop Biomed, 2015 Sep;32(3):554-6.
    PMID: 26695218 MyJurnal
    Given the lack of molecular evidence in altered target-site insecticide resistance mechanism in Aedes albopictus (Skuse) worldwide, the present study aims to detect the presence of A302S mutation in the gene encoding the gamma aminobutyric acid receptor resistant to dieldrin (Rdl) in Ae. albopictus for the first time from its native range of South East Asia, namely Malaysia. World Health Organization (WHO) adult susceptibility bioassay indicated a relatively low level of dieldrin resistance (two-fold) in Ae. albopictus from Petaling Jaya, Selangor. However, PCR-RFLP and direct sequencing methods revealed the presence of the A302S mutation with the predomination of heterozygous genotype (40 out of 82 individuals), followed by the resistant genotype with 11 individuals. This study represents the first field evolved instance of A302S mutation in Malaysian insect species.
    Matched MeSH terms: Mutation, Missense*
  5. Hashim IF, Ahmad Mokhtar AM
    Int J Biochem Cell Biol, 2021 08;137:106034.
    PMID: 34216756 DOI: 10.1016/j.biocel.2021.106034
    Primary immunodeficiencies (PIDs) are associated with deleterious mutations of genes that encode proteins involved in actin cytoskeleton reorganisation. This deficiency affects haematopoietic cells. PID results in the defective function of immune cells, such as impaired chemokine-induced motility, receptor signalling, development and maturation. Some of the genes mutated in PIDs are related to small Ras homologous (Rho) guanosine triphosphatase (GTPase), one of the families of the Ras superfamily. Most of these genes act as molecular switches by cycling between active guanosine triphosphate-bound and inactive guanosine diphosphate-bound forms to control multiple cellular functions. They are best studied for their role in promoting cytoskeleton reorganisation, cell adhesion and motility. Currently, only three small Rho GTPases, namely, Rac2, Cdc42 and RhoH, have been identified in PIDs. However, several other Rho small G proteins might also contribute to the deregulation and phenotype observed in PIDs. Their contribution in PIDs may involve their main regulator, Rho guanine nucleotide exchange factors such as DOCK2 and DOCK8, wherein mutations may result in the impairment of small Rho GTPase activation. Thus, this review outlines the potential contribution of several small Rho GTPases to the promotion of PIDs.
    Matched MeSH terms: Mutation*
  6. Mangantig E, MacGregor S, Iles MM, Scolyer RA, Cust AE, Hayward NK, et al.
    Hum Mol Genet, 2021 01 06;29(21):3578-3587.
    PMID: 33410475 DOI: 10.1093/hmg/ddaa222
    Germline genetic variants have been identified, which predispose individuals and families to develop melanoma. Tumor thickness is the strongest predictor of outcome for clinically localized primary melanoma patients. We sought to determine whether there is a heritable genetic contribution to variation in tumor thickness. If confirmed, this will justify the search for specific genetic variants influencing tumor thickness. To address this, we estimated the proportion of variation in tumor thickness attributable to genome-wide genetic variation (variant-based heritability) using unrelated patients with measured primary cutaneous melanoma thickness. As a secondary analysis, we conducted a genome-wide association study (GWAS) of tumor thickness. The analyses utilized 10 604 individuals with primary cutaneous melanoma drawn from nine GWAS datasets from eight cohorts recruited from the general population, primary care and melanoma treatment centers. Following quality control and filtering to unrelated individuals with study phenotypes, 8125 patients were used in the primary analysis to test whether tumor thickness is heritable. An expanded set of 8505 individuals (47.6% female) were analyzed for the secondary GWAS meta-analysis. Analyses were adjusted for participant age, sex, cohort and ancestry. We found that 26.6% (SE 11.9%, P = 0.0128) of variation in tumor thickness is attributable to genome-wide genetic variation. While requiring replication, a chromosome 11 locus was associated (P 
    Matched MeSH terms: Germ-Line Mutation*
  7. Saitsu H, Watanabe M, Akita T, Ohba C, Sugai K, Ong WP, et al.
    Sci Rep, 2016 07 20;6:30072.
    PMID: 27436767 DOI: 10.1038/srep30072
    Epilepsy of infancy with migrating focal seizures (EIMFS) is one of the early-onset epileptic syndromes characterized by migrating polymorphous focal seizures. Whole exome sequencing (WES) in ten sporadic and one familial case of EIMFS revealed compound heterozygous SLC12A5 (encoding the neuronal K(+)-Cl(-) co-transporter KCC2) mutations in two families: c.279 + 1G > C causing skipping of exon 3 in the transcript (p.E50_Q93del) and c.572 C >T (p.A191V) in individuals 1 and 2, and c.967T > C (p.S323P) and c.1243 A > G (p.M415V) in individual 3. Another patient (individual 4) with migrating multifocal seizures and compound heterozygous mutations [c.953G > C (p.W318S) and c.2242_2244del (p.S748del)] was identified by searching WES data from 526 patients and SLC12A5-targeted resequencing data from 141 patients with infantile epilepsy. Gramicidin-perforated patch-clamp analysis demonstrated strongly suppressed Cl(-) extrusion function of E50_Q93del and M415V mutants, with mildly impaired function of A191V and S323P mutants. Cell surface expression levels of these KCC2 mutants were similar to wildtype KCC2. Heterologous expression of two KCC2 mutants, mimicking the patient status, produced a significantly greater intracellular Cl(-) level than with wildtype KCC2, but less than without KCC2. These data clearly demonstrated that partially disrupted neuronal Cl(-) extrusion, mediated by two types of differentially impaired KCC2 mutant in an individual, causes EIMFS.
    Matched MeSH terms: Mutation*
  8. Narayanan V, Veeramuthu V, Ahmad-Annuar A, Ramli N, Waran V, Chinna K, et al.
    PLoS One, 2016;11(7):e0158838.
    PMID: 27438599 DOI: 10.1371/journal.pone.0158838
    The predictability of neurocognitive outcomes in patients with traumatic brain injury is not straightforward. The extent and nature of recovery in patients with mild traumatic brain injury (mTBI) are usually heterogeneous and not substantially explained by the commonly known demographic and injury-related prognostic factors despite having sustained similar injuries or injury severity. Hence, this study evaluated the effects and association of the Brain Derived Neurotrophic Factor (BDNF) missense mutations in relation to neurocognitive performance among patients with mTBI. 48 patients with mTBI were prospectively recruited and MRI scans of the brain were performed within an average 10.1 (SD 4.2) hours post trauma with assessment of their neuropsychological performance post full Glasgow Coma Scale (GCS) recovery. Neurocognitive assessments were repeated again at 6 months follow-up. The paired t-test, Cohen's d effect size and repeated measure ANOVA were performed to delineate statistically significant differences between the groups [wildtype G allele (Val homozygotes) vs. minor A allele (Met carriers)] and their neuropsychological performance across the time point (T1 = baseline/ admission vs. T2 = 6th month follow-up). Minor A allele carriers in this study generally performed more poorly on neuropsychological testing in comparison wildtype G allele group at both time points. Significant mean differences were observed among the wildtype group in the domains of memory (M = -11.44, SD = 10.0, p = .01, d = 1.22), executive function (M = -11.56, SD = 11.7, p = .02, d = 1.05) and overall performance (M = -6.89 SD = 5.3, p = .00, d = 1.39), while the minor A allele carriers showed significant mean differences in the domains of attention (M = -11.0, SD = 13.1, p = .00, d = .86) and overall cognitive performance (M = -5.25, SD = 8.1, p = .01, d = .66).The minor A allele carriers in comparison to the wildtype G allele group, showed considerably lower scores at admission and remained impaired in most domains across the timepoints, although delayed signs of recovery were noted to be significant in the domains attention and overall cognition. In conclusion, the current study has demonstrated the role of the BDNF rs6265 Val66Met polymorphism in influencing specific neurocognitive outcomes in patients with mTBI. Findings were more detrimentally profound among Met allele carriers.
    Matched MeSH terms: Mutation, Missense/genetics*
  9. Pahrudin Arrozi A, Shukri SNS, Wan Ngah WZ, Mohd Yusof YA, Ahmad Damanhuri MH, Makpol S
    Appl Biochem Biotechnol, 2017 Nov;183(3):853-866.
    PMID: 28417423 DOI: 10.1007/s12010-017-2468-6
    Neuroblastoma cell lines such as SH-SY5Y are the most frequently utilized models in neurodegenerative research, and their use has advanced the understanding of the pathology of neurodegeneration over the past few decades. In Alzheimer's disease (AD), several pathogenic mutations have been described, all of which cause elevated levels of pathological hallmarks such as amyloid-beta (Aβ). Although the genetics of Alzheimer's disease is well known, familial AD only accounts for a small number of cases in the population, with the rest being sporadic AD, which contains no known mutations. Currently, most of the in vitro models used to study AD pathogenesis only examine the level of Aβ42 as a confirmation of successful model generation and only perform comparisons between wild-type APP and single mutants of the APP gene. Recent findings have shown that the Aβ42/40 ratio in cerebrospinal fluid (CSF) is a better diagnostic indicator for AD patients than is Aβ42 alone and that more extensive Aβ formation, such as accumulation of intraneuronal Aβ, Aβ plaques, soluble oligomeric Aβ (oAβ), and insoluble fibrillar Aβ (fAβ) occurs in TgCRND8 mice expressing a double-mutant form (Swedish and Indiana) of APP, later leading to greater progressive impairment of the brain. In this study, we generated SH-SY5Y cells stably transfected separately with wild-type APP, the Swedish mutation of APP, and the Swedish and Indiana mutations of APP and evaluated the APP expression as well as the Aβ42/40 ratio in those cells. The double-mutant form of APP (Swedish/Indiana) expressed markedly high levels of APP protein and showed a high Aβ2/40 ratio compared to wild-type and single-mutant cells.
    Matched MeSH terms: Mutation*
  10. Ashley SE, Tan HT, Vuillermin P, Dharmage SC, Tang MLK, Koplin J, et al.
    Allergy, 2017 Sep;72(9):1356-1364.
    PMID: 28213955 DOI: 10.1111/all.13143
    BACKGROUND: A defective skin barrier is hypothesized to be an important route of sensitization to dietary antigens and may lead to food allergy in some children. Missense mutations in the serine peptidase inhibitor Kazal type 5 (SPINK5) skin barrier gene have previously been associated with allergic conditions.

    OBJECTIVE: To determine whether genetic variants in and around SPINK5 are associated with IgE-mediated food allergy.

    METHOD: We genotyped 71 "tag" single nucleotide polymorphisms (tag-SNPs) within a region spanning ~263 kb including SPINK5 (~61 kb) in n=722 (n=367 food-allergic, n=199 food-sensitized-tolerant and n=156 non-food-allergic controls) 12-month-old infants (discovery sample) phenotyped for food allergy with the gold standard oral food challenge. Transepidermal water loss (TEWL) measures were collected at 12 months from a subset (n=150) of these individuals. SNPs were tested for association with food allergy using the Cochran-Mantel-Haenszel test adjusting for ancestry strata. Association analyses were replicated in an independent sample group derived from four paediatric cohorts, total n=533 (n=203 food-allergic, n=330 non-food-allergic), mean age 2.5 years, with food allergy defined by either clinical history of reactivity, 95% positive predictive value (PPV) or challenge, corrected for ancestry by principal components.

    RESULTS: SPINK5 variant rs9325071 (A⟶G) was associated with challenge-proven food allergy in the discovery sample (P=.001, OR=2.95, CI=1.49-5.83). This association was further supported by replication (P=.007, OR=1.58, CI=1.13-2.20) and by meta-analysis (P=.0004, OR=1.65). Variant rs9325071 is associated with decreased SPINK5 gene expression in the skin in publicly available genotype-tissue expression data, and we generated preliminary evidence for association of this SNP with elevated TEWL also.

    CONCLUSIONS: We report, for the first time, association between SPINK5 variant rs9325071 and challenge-proven IgE-mediated food allergy.

    Matched MeSH terms: Mutation/immunology*
  11. Norsham Juliana, Shaiful Yahaya, Abdul Latiff Mohamed, Roslan Harun
    MyJurnal
    This study targeted two candidate genes from the best known regulator of blood pressure; the rennin angiotensin system; the ACE gene I/D polymorphism and the angiotensinogen M235T polymorphism. The study aimed to determine the genotypes trend between two different populations; the primary hypertensive patients, and the normal populations. 126 subjects were involved in this study (86 primary hypertensive patients and 40 normal individuals). All demographic factors were considered and analyzed. Insertion/deletion polymorphisms of the ACE gene were determined by an assay based on the polymerase chain reaction (PCR). Polymorphism analysis using PCR-RFLP procedure was used to identify the missense mutation M235T of the AGT gene. All significant data was collected using standardized case report form. The association of the different genotypes and the subjects’ condition was analyzed using the chi squared and odds ratio analyses. In the pooled analysis of both groups, it was shown that the polymorphisms in these genes were significantly associated with the incidence of primary hypertension, p<0.05. Results also showed that the D allele of the ACE gene may be associated with increased risk of primary hypertension (p<0.05, O.R: 3.0 [C.I: 1.25 – 5.35]). The angiotensinogen M235T polymorphism also showed a significant result; the T allele is associated with increased risk of primary hypertension (p<0.05, O.R: 2.56[C.I: 1.55 – 5.28]). This knowledge of the candidate genes of rennin angiotensin system has rendered it possible to show that gene polymorphism in symphony leads to the individual risk of primary hypertension.
    Keywords: ACE, M235T, rennin, hypertension

    Study site: University Kebangsaan Malaysia Medical Center and International Medical University Cardiology Clinic
    Matched MeSH terms: Mutation, Missense; INDEL Mutation
  12. Al-Shuhaib MBS, Al-Kafajy FR, Badi MA, AbdulAzeez S, Marimuthu K, Al-Juhaishi HAI, et al.
    Comput Biol Med, 2018 09 01;100:17-26.
    PMID: 29960146 DOI: 10.1016/j.compbiomed.2018.06.019
    Because of variable inconvenient living conditions in some places around the world, it is difficult to collect reliable physiological data for ostriches. Therefore, this study aims to provide a comprehensive in silico insight for the nature of polymorphism of important genetic loci that are related to physiological and reproductive traits. Sixty-nine mature ostriches ranging over half of Iraq were screened. Six exonic genetic loci, including cytochrome c oxidase I (COX1), cytochrome b (CYTB), secretogranin V (SCG5), feather keratin 2-like (FK2), prolactin (PRL) and placenta growth factor (PGF) were genotyped by PCR-single stranded conformation polymorphism (SSCP). Thirty-six novel SNPs, including seventeen nonsynonymous (ns) SNPs, were observed. Several computational software programs were utilized to assess the extent of the nsSNPs on their corresponding proteins structure, function and stability. The results showed several deleterious functional and stability changes in almost all the proteins studied. The total severity of each missense mutation was evaluated and compared with other nsSNPs accumulatively. It is evident from the extensive cumulative in silico computation that both p.E34D and p.E60K in PGF have the highest deleterious effect. The cumulative predictions from the present study are an impressive guide for the genotypes of African ostriches, which bypassed the expensive protocols for wet laboratory screening, to identify the effects of variants. To the best of our knowledge, this is the first investigation of its kind on the analyses and prediction outcome of missense mutations in African ostrich populations. The highly deleterious nsSNPs in the placenta growth factor are possible adaptive mutations which might be associated with adaptation in extreme and new environments. The flow and protocol of the computational predictions can be extended for various wild animals to identify the molecular nature of adaptations.
    Matched MeSH terms: Mutation; Mutation, Missense
  13. Baertling F, Sánchez-Caballero L, Timal S, van den Brand MA, Ngu LH, Distelmaier F, et al.
    Mol Genet Metab, 2017 03;120(3):243-246.
    PMID: 27986404 DOI: 10.1016/j.ymgme.2016.12.005
    NDUFAF3 is an assembly factor of mitochondrial respiratory chain complex I. Variants in NDUFAF3 have been identified as a cause of severe multisystem mitochondrial disease. In a patient presenting with Leigh syndrome, which has hitherto not been described as a clinical feature of NDUFAF3 deficiency, we identified a novel homozygous variant and confirmed its pathogenicity in patient fibroblasts studies. Furthermore, we present an analysis of complex I assembly routes representative of each functional module and, thereby, link NDUFAF3 to a specific step in complex I assembly. Therefore, our report expands the phenotype of NDUFAF3 deficiency and further characterizes the role of NDUFAF3 in complex I biogenesis.
    Matched MeSH terms: Mutation*
  14. Hussain H, Chong NF
    Biomed Res Int, 2016;2016:8041532.
    PMID: 27995143
    The combined overlap extension PCR (COE-PCR) method developed in this work combines the strengths of the overlap extension PCR (OE-PCR) method with the speed and ease of the asymmetrical overlap extension (AOE-PCR) method. This combined method allows up to 6 base pairs to be mutated at a time and requires a total of 40-45 PCR cycles. A total of eight mutagenesis experiments were successfully carried out, with each experiment mutating between two to six base pairs. Up to four adjacent codons were changed in a single experiment. This method is especially useful for codon optimization, where doublet or triplet rare codons can be changed using a single mutagenic primer set, in a single experiment.
    Matched MeSH terms: Mutation/genetics*
  15. Fu JYL, Chua CL, Vythilingam I, Sulaiman WYW, Wong HV, Chan YF, et al.
    J Gen Virol, 2019 11;100(11):1541-1553.
    PMID: 31613205 DOI: 10.1099/jgv.0.001338
    Chikungunya virus (CHIKV) has caused large-scale epidemics of fever, rash and arthritis since 2004. This unprecedented re-emergence has been associated with mutations in genes encoding structural envelope proteins, providing increased fitness in the secondary vector Aedes albopictus. In the 2008-2013 CHIKV outbreaks across Southeast Asia, an R82S mutation in non-structural protein 4 (nsP4) emerged early in Malaysia or Singapore and quickly became predominant. To determine whether this nsP4-R82S mutation provides a selective advantage in host cells, which may have contributed to the epidemic, the fitness of infectious clone-derived CHIKV with wild-type nsP4-82R and mutant nsP4-82S were compared in Ae. albopictus and human cell lines. Viral infectivity, dissemination and transmission in Ae. albopictus were not affected by the mutation when the two variants were tested separately. In competition, the nsP4-82R variant showed an advantage over nsP4-82S in dissemination to the salivary glands, but only in late infection (10 days). In human rhabdomyosarcoma (RD) and embryonic kidney (HEK-293T) cell lines coinfected at a 1 : 1 ratio, wild-type nsP4-82R virus was rapidly outcompeted by nsP4-82S virus as early as one passage (3 days). In conclusion, the nsP4-R82S mutation provides a greater selective advantage in human cells than in Ae. albopictus, which may explain its apparent natural selection during CHIKV spread in Southeast Asia. This is an unusual example of a naturally occurring mutation in a non-structural protein, which may have facilitated epidemic transmission of CHIKV.
    Matched MeSH terms: Mutation, Missense*
  16. Deng L, Lou H, Zhang X, Thiruvahindrapuram B, Lu D, Marshall CR, et al.
    BMC Genomics, 2019 Nov 12;20(1):842.
    PMID: 31718558 DOI: 10.1186/s12864-019-6226-8
    BACKGROUND: Recent advances in genomic technologies have facilitated genome-wide investigation of human genetic variations. However, most efforts have focused on the major populations, yet trio genomes of indigenous populations from Southeast Asia have been under-investigated.

    RESULTS: We analyzed the whole-genome deep sequencing data (~ 30×) of five native trios from Peninsular Malaysia and North Borneo, and characterized the genomic variants, including single nucleotide variants (SNVs), small insertions and deletions (indels) and copy number variants (CNVs). We discovered approximately 6.9 million SNVs, 1.2 million indels, and 9000 CNVs in the 15 samples, of which 2.7% SNVs, 2.3% indels and 22% CNVs were novel, implying the insufficient coverage of population diversity in existing databases. We identified a higher proportion of novel variants in the Orang Asli (OA) samples, i.e., the indigenous people from Peninsular Malaysia, than that of the North Bornean (NB) samples, likely due to more complex demographic history and long-time isolation of the OA groups. We used the pedigree information to identify de novo variants and estimated the autosomal mutation rates to be 0.81 × 10- 8 - 1.33 × 10- 8, 1.0 × 10- 9 - 2.9 × 10- 9, and ~ 0.001 per site per generation for SNVs, indels, and CNVs, respectively. The trio-genomes also allowed for haplotype phasing with high accuracy, which serves as references to the future genomic studies of OA and NB populations. In addition, high-frequency inherited CNVs specific to OA or NB were identified. One example is a 50-kb duplication in DEFA1B detected only in the Negrito trios, implying plausible effects on host defense against the exposure of diverse microbial in tropical rainforest environment of these hunter-gatherers. The CNVs shared between OA and NB groups were much fewer than those specific to each group. Nevertheless, we identified a 142-kb duplication in AMY1A in all the 15 samples, and this gene is associated with the high-starch diet. Moreover, novel insertions shared with archaic hominids were identified in our samples.

    CONCLUSION: Our study presents a full catalogue of the genome variants of the native Malaysian populations, which is a complement of the genome diversity in Southeast Asians. It implies specific population history of the native inhabitants, and demonstrated the necessity of more genome sequencing efforts on the multi-ethnic native groups of Malaysia and Southeast Asia.

    Matched MeSH terms: INDEL Mutation; Mutation Rate
  17. Thevarajah M, Nadzimah MN, Chew YY
    Clin Biochem, 2009 Mar;42(4-5):430-4.
    PMID: 19026622 DOI: 10.1016/j.clinbiochem.2008.10.015
    Glycated hemoglobin, measured as HbA1c is used as an index of mean glycemia in diabetic patients over the preceding 2-3 months. Various assay methods are used to measure HbA1c and many factors may interfere with its measurement according to assay method used, causing falsely high or low results.
    Matched MeSH terms: Mutation/genetics*
  18. Karunakaran R, Srikumar PS
    Mol Cell Biochem, 2018 Dec;449(1-2):55-62.
    PMID: 29532225 DOI: 10.1007/s11010-018-3342-8
    The crystallins are a family of monomeric proteins present in the mammalian lens and mutations in these proteins cause various forms of cataracts. The aim of our current study is to emphasize the structural characterization of aggregation propensity of mutation R58H on γD crystallin using molecular dynamics (MD) approach. MD result revealed that difference in the sequence level display a wide variation in the backbone atomic position, and thus exhibits rigid conformational dynamics. Changes in the flexibility of residues favoured to increase the number of intra-molecular hydrogen bonds in mutant R58H. Moreover, notable changes in the hydrogen bonding interaction resulted to cause the misfolding of mutant R58H by introducing α-helix. Principal component analysis (PCA) result suggested that mutant R58H showed unusual conformational dynamics along the two principal components when compared to the wild-type (WT)-γD crystallin. In a nutshell, the increased surface hydrophobicity could be the cause of self-aggregation of mutant R58H leading to aculeiform cataract.
    Matched MeSH terms: Mutation, Missense*
  19. Balasubramaniam S, Kapoor R, Yeow JH, Lim PG, Flanagan S, Ellard S, et al.
    J Pediatr Endocrinol Metab, 2011;24(7-8):573-7.
    PMID: 21932603
    Hyperinsulinism-hyperammonemia syndrome (HI/HA) (OMIM 606762), the second most common form of congenital hyperinsulinism (CHI) is associated with activating missense mutations in the GLUD1 gene, which encodes the mitochondrial matrix enzyme, glutamate dehydrogenase (GDH). Patients present with recurrent symptomatic postprandial hypoglycemia following protein-rich meals (leucine-sensitive hypoglycemia) as well as fasting hypoglycemia accompanied by asymptomatic elevations of plasma ammonia. In contrast to other forms of CHI, the phenotype is reported to be milder thus escaping recognition for the first few months of life. Early diagnosis and appropriate management are essential to avoid the neurodevelopmental consequences including epilepsy and learning disabilities which are prevalent in this disorder. We report an infant presenting with afebrile seizures secondary to hyperinsulinemic hypoglycemia resulting from a novel de novo mutation of the GLUD1 gene.
    Matched MeSH terms: Mutation*
  20. Breast Cancer Association Consortium, Dorling L, Carvalho S, Allen J, González-Neira A, Luccarini C, et al.
    N Engl J Med, 2021 02 04;384(5):428-439.
    PMID: 33471991 DOI: 10.1056/NEJMoa1913948
    BACKGROUND: Genetic testing for breast cancer susceptibility is widely used, but for many genes, evidence of an association with breast cancer is weak, underlying risk estimates are imprecise, and reliable subtype-specific risk estimates are lacking.

    METHODS: We used a panel of 34 putative susceptibility genes to perform sequencing on samples from 60,466 women with breast cancer and 53,461 controls. In separate analyses for protein-truncating variants and rare missense variants in these genes, we estimated odds ratios for breast cancer overall and tumor subtypes. We evaluated missense-variant associations according to domain and classification of pathogenicity.

    RESULTS: Protein-truncating variants in 5 genes (ATM, BRCA1, BRCA2, CHEK2, and PALB2) were associated with a risk of breast cancer overall with a P value of less than 0.0001. Protein-truncating variants in 4 other genes (BARD1, RAD51C, RAD51D, and TP53) were associated with a risk of breast cancer overall with a P value of less than 0.05 and a Bayesian false-discovery probability of less than 0.05. For protein-truncating variants in 19 of the remaining 25 genes, the upper limit of the 95% confidence interval of the odds ratio for breast cancer overall was less than 2.0. For protein-truncating variants in ATM and CHEK2, odds ratios were higher for estrogen receptor (ER)-positive disease than for ER-negative disease; for protein-truncating variants in BARD1, BRCA1, BRCA2, PALB2, RAD51C, and RAD51D, odds ratios were higher for ER-negative disease than for ER-positive disease. Rare missense variants (in aggregate) in ATM, CHEK2, and TP53 were associated with a risk of breast cancer overall with a P value of less than 0.001. For BRCA1, BRCA2, and TP53, missense variants (in aggregate) that would be classified as pathogenic according to standard criteria were associated with a risk of breast cancer overall, with the risk being similar to that of protein-truncating variants.

    CONCLUSIONS: The results of this study define the genes that are most clinically useful for inclusion on panels for the prediction of breast cancer risk, as well as provide estimates of the risks associated with protein-truncating variants, to guide genetic counseling. (Funded by European Union Horizon 2020 programs and others.).

    Matched MeSH terms: Mutation, Missense*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links