Displaying publications 241 - 260 of 531 in total

Abstract:
Sort:
  1. Fam SY, Chee CF, Yong CY, Ho KL, Mariatulqabtiah AR, Lau HY, et al.
    Int J Mol Sci, 2019 Oct 03;20(19).
    PMID: 31623310 DOI: 10.3390/ijms20194903
    Virus-like nanoparticles (VLNPs) have been studied extensively as nanocarriers for targeted drug delivery to cancer cells. However, VLNPs have intrinsic drawbacks, in particular, potential antigenicity and immunogenicity, which hamper their clinical applications. Thus, they can be eliminated easily and rapidly by host immune systems, rendering these nanoparticles ineffective for drug delivery. The aim of this study was to reduce the antigenicity of hepatitis B core antigen (HBcAg) VLNPs by shielding them with a hydrophilic polymer, poly(2-ethyl-2-oxazoline) (PEtOx). In the present study, an amine-functionalized PEtOx (PEtOx-NH2) was synthesized using the living cationic ring-opening polymerization (CROP) technique and covalently conjugated to HBcAg VLNPs via carboxyl groups. The PEtOx-conjugated HBcAg (PEtOx-HBcAg) VLNPs were characterized with dynamic light scattering and UV-visible spectroscopy. The colloidal stability study indicated that both HBcAg and PEtOx-HBcAg VLNPs maintained their particle size in Tris-buffered saline (TBS) at human body temperature (37 °C) for at least five days. Enzyme-linked immunosorbent assays (ELISA) demonstrated that the antigenicity of PEtOx-HBcAg VLNPs reduced significantly as compared with unconjugated HBcAg VLNPs. This novel conjugation approach provides a general platform for resolving the antigenicity of VLNPs, enabling them to be developed into a variety of nanovehicles for targeted drug delivery.
    Matched MeSH terms: Drug Delivery Systems*
  2. Wadhwa R, Pandey P, Gupta G, Aggarwal T, Kumar N, Mehta M, et al.
    Curr Top Med Chem, 2019;19(28):2593-2609.
    PMID: 31746290 DOI: 10.2174/1568026619666191026105308
    BACKGROUND: Candida species are the important etiologic agents for candidiasis, the most prevalent cause of opportunistic fungal infections. Candida invasion results in mucosal to systemic infections through immune dysfunction and helps in further invasion and proliferation at several sites in the host. The host defence system utilizes a wide array of the cells, proteins and chemical signals that are distributed in blood and tissues which further constitute the innate and adaptive immune system. The lack of antifungal agents and their limited therapeutic effects have led to high mortality and morbidity related to such infections.

    METHODS: The necessary information collated on this review has been gathered from various literature published from 1995 to 2019.

    RESULTS: This article sheds light on novel drug delivery approaches to target the immunological axis for several Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. rugose, C. hemulonii, etc.).

    CONCLUSION: It is clear that the novel drug delivery approaches include vaccines, adoptive transfer of primed immune cells, recombinant cytokines, therapeutic antibodies, and nanoparticles, which have immunomodulatory effects. Such advancements in targeting various underpinning mechanisms using the concept of novel drug delivery will provide a new dimension to the fungal infection clinic particularly due to Candida species with improved patient compliance and lesser side effects. This advancement in knowledge can also be extended to target various other similar microbial species and infections.

    Matched MeSH terms: Drug Delivery Systems*
  3. Jahangirian H, Kalantari K, Izadiyan Z, Rafiee-Moghaddam R, Shameli K, Webster TJ
    Int J Nanomedicine, 2019;14:1633-1657.
    PMID: 30880970 DOI: 10.2147/IJN.S184723
    Conventional cancer treatment techniques show several limitations including low or no specificity and consequently a low efficacy in discriminating between cancer cells and healthy cells. Recent nanotechnology developments have introduced smart and novel therapeutic nanomaterials that take advantage of various targeting approaches. The use of nanotechnology in medicine and, more specifically, drug delivery is set to spread even more rapidly than it has over the past two decades. Currently, many nanoparticles (NPs) are under investigation for drug delivery including those for cancer therapy. Targeted nanomaterials bind selectively to cancer cells and greatly affect them with only a minor effect on healthy cells. Gold nanoparticles (Au-NPs), specifically, have been identified as significant candidates for new cancer therapeutic modalities because of their biocompatibility, easy functionalization and fabrication, optical tunable characteristics, and chemophysical stability. In the last decade, there has been significant research on Au-NPs and their biomedical applications. Functionalized Au-NPs represent highly attractive and promising candidates for drug delivery, owing to their unique dimensions, tunable surface functionalities, and controllable drug release. Further, iron oxide NPs due to their "superparamagnetic" properties have been studied and have demonstrated successful employment in numerous applications. In targeted drug delivery systems, drug-loaded iron oxide NPs can accumulate at the tumor site with the aid of an external magnetic field. This can lead to incremental effectiveness in drug release to the tumor site and vanquish cancer cells without harming healthy cells. In order for the application of iron oxide NPs in the human body to be realized, they should be biodegradable and biocompatible to minimize toxicity. This review illustrates recent advances in the field drug and small molecule delivery such as fluorouracil, folic acid, doxorubicin, paclitaxel, and daunorubicin, specifically when using gold and iron oxide NPs as carriers of anticancer therapeutic agents.
    Matched MeSH terms: Drug Delivery Systems*
  4. Hussain Z, Khan S, Imran M, Sohail M, Shah SWA, de Matas M
    Drug Deliv Transl Res, 2019 06;9(3):721-734.
    PMID: 30895453 DOI: 10.1007/s13346-019-00631-4
    On account of heterogeneity, intrinsic ability of drug resistance, and the potential to invade to other parts of the body (malignancy), the development of a rational anticancer regimen is dynamically challenging. Chemotherapy is considered the gold standard for eradication of malignancy and mitigation of its reoccurrence; nevertheless, it has also been associated with detrimental effects to normal tissues owing to its nonselectivity and nominal penetration into the tumor tissues. In recent decades, nanotechnology-guided interventions have been well-acclaimed due to their ability to facilitate target-specific delivery of drugs, avoidance of nontarget distribution, alleviated systemic toxicity, and maximized drug internalization into cancer cells. Despite their numerous biomedical advantages, clinical translation of nanotechnology-mediated regimens is challenging due to their short plasma half-life and early clearance. PEGylation of nanomedicines has been adapted as an efficient strategy to extend plasma half-life and diminished early plasma clearance via alleviating the opsonization (uptake by monocytes and macrophages) of drug nanocarriers. PEGylation provides "stealth" properties to nanocarrier's surfaces which diminished their recognition or uptake by cellular immune system, leading to longer circulation time, reduced dosage and frequency, and superior site-selective delivery of drugs. Therefore, this review aims to present a comprehensive overview of the pharmaceutical advantages and therapeutic feasibility of PEGylation of nanocarriers in improving tumor-specific targetability, reversing drug resistance, and improving pharmacokinetic profile of drugs and anticancer efficacy. Challenges to PEGylated cancer nanomedicines, possible adaptations to resolve those challenges, and pivotal requirement for interdisciplinary research for development of rational anticancer regimen have also been pondered.
    Matched MeSH terms: Drug Delivery Systems*
  5. Wsoo MA, Shahir S, Mohd Bohari SP, Nayan NHM, Razak SIA
    Carbohydr Res, 2020 May;491:107978.
    PMID: 32163784 DOI: 10.1016/j.carres.2020.107978
    Cellulose acetate (CA) is a remarkable biomaterial most extensively used in biomedical applications due to their properties. This review highlighted the synthesis and chemical structure of CA polymer as well as focused on the mechanical, chemical, thermal, biocompatible, and biodegradable properties of electrospun CA nanofibers. These properties are essential in the evaluation of the CA nanofibers and provide information as a reference for the further utilization and improvement of CA nanofibers. Moreover, we have summarized the use of electrospun CA nanofibers in the drug delivery system as a carrier for drugs and classify them according to the drug class, including anti-inflammatory, anticancer, antioxidant, antimicrobial agents, vitamins and amino acids. Our review has been concluded that CA nanofibers cannot wholly be biodegraded within the human body due to the absence of cellulase enzyme but degraded by microorganisms. Hence, the biodegradation of CA nanofibers in vivo has addressed as a critical challenge.
    Matched MeSH terms: Drug Delivery Systems*
  6. Wei S, Ching YC, Chuah CH
    Carbohydr Polym, 2020 Mar 01;231:115744.
    PMID: 31888854 DOI: 10.1016/j.carbpol.2019.115744
    Chitosan with abundant functional groups is regarded as important ingredients for preparing aerogel materials in life science. The biocompatibility and biodegradability of chitosan aerogels, coupled to the variety of chemical functionalities they include, result in them promising carriers for drug delivery. Moreover, chitosan aerogels as drug delivery vehicles can offer improved drug bioavailability and drug loading capacity due to their highly porous network, considerably large specific surface area and polycationic feature. The major focus of this review lies in preparation methods of chitosan aerogels from acidic aqueous solution and chitosan solution in Ionic Liquids (ILs). In addition, chitosan aerogels as drug delivery carriers are introduced in detail and expected to inspire readers to create new kind of drug delivery system based on chitosan aerogels. Finally, growing points and perspectives of chitosan aerogels in drug delivery system are given.
    Matched MeSH terms: Drug Delivery Systems*
  7. Patnaik S, Gorain B, Padhi S, Choudhury H, Gabr GA, Md S, et al.
    Eur J Pharm Biopharm, 2021 Apr;161:100-119.
    PMID: 33639254 DOI: 10.1016/j.ejpb.2021.02.010
    Potential research outcomes on nanotechnology-based novel drug delivery systems since the past few decades attracted the attention of the researchers to overcome the limitations of conventional deliveries. Apart from possessing enhanced solubility of poorly water-soluble drugs, the targeting potential of the carriers facilitates longer circulation and site-specific delivery of the entrapped therapeutics. The practice of these delivery systems, therefore, helps in maximizing bioavailability, improving pharmacokinetics profile, pharmacodynamics activity and biodistribution of the entrapped drug(s). In addition to focusing on the positive side, evaluation of nanoparticulate systems for toxicity is a crucial parameter for its biomedical applications. Due to the size of nanoparticles, they easily traverse through biological barriers and may be accumulated in the body, where the ingredients incorporated in the formulation development might accumulate and/or produce toxic manifestation, leading to cause severe health hazards. Therefore, the toxic profile of these delivery systems needs to be evaluated at the molecular, cellular, tissue and organ level. This review offers a comprehensive presentation of toxicity aspects of the constituents of nanoparticular based drug delivery systems, which would be beneficial for future researchers to develop nanoparticulate delivery vehicles for the improvement of delivery approaches in a safer way.
    Matched MeSH terms: Drug Delivery Systems*
  8. Abeer MM, Mohd Amin MC, Martin C
    J Pharm Pharmacol, 2014 Aug;66(8):1047-61.
    PMID: 24628270 DOI: 10.1111/jphp.12234
    The field of pharmaceutical technology is expanding rapidly because of the increasing number of drug delivery options. Successful drug delivery is influenced by multiple factors, one of which is the appropriate identification of materials for research and engineering of new drug delivery systems. Bacterial cellulose (BC) is one such biopolymer that fulfils the criteria for consideration as a drug delivery material.
    Matched MeSH terms: Drug Delivery Systems/methods*
  9. Pandey M, Choudhury H, Verma RK, Chawla V, Bhattamisra SK, Gorain B, et al.
    CNS Neurol Disord Drug Targets, 2020;19(9):648-662.
    PMID: 32819251 DOI: 10.2174/1871527319999200819095620
    Alzheimer Association Report (2019) stated that the 6th primary cause of death in the USA is Alzheimer's Disease (AD), which leads to behaviour and cognitive impairment. Nearly 5.8 million peoples of all ages in the USA have suffered from this disease, including 5.6 million elderly populations. The statistics of the progression of this disease is similar to the global scenario. Still, the treatment of AD is limited to a few conventional oral drugs, which often fail to deliver an adequate amount of the drug in the brain. The reduction in the therapeutic efficacy of an anti-AD drug is due to poor solubility, existence to the blood-brain barrier and low permeability. In this context, nasal drug delivery emerges as a promising route for the delivery of large and small molecular drugs for the treatment of AD. This promising pathway delivers the drug directly into the brain via an olfactory route, which leads to the low systemic side effect, enhanced bioavailability, and higher therapeutic efficacy. However, few setbacks, such as mucociliary clearance and poor drug mucosal permeation, limit its translation from the laboratory to the clinic. The above stated limitation could be overcome by the adaption of nanoparticle as a drug delivery carrier, which may lead to prolong delivery of drugs with better permeability and high efficacy. This review highlights the latest work on the development of promising Nanoparticles (NPs) via the intranasal route for the treatment of AD. Additionally, the current update in this article will draw the attention of the researcher working on these fields and facing challenges in practical applicability.
    Matched MeSH terms: Drug Delivery Systems/methods*
  10. Mustafa IF, Hussein MZ, Idris AS, Hilmi NHZ, Fakurazi S
    Molecules, 2021 Sep 26;26(19).
    PMID: 34641379 DOI: 10.3390/molecules26195837
    Reports on fungicide-based agronanochemicals in combating disastrous basal stem rot disease in the oil palm industry are scant. Herein, we describe the potential of fungicide nanodelivery agents based on hexaconazole-micelle systems produced using three different surfactants; sodium dodecylbenze sulfonate (SDBS), sodium dodecyl sulfate (SDS) and Tween 80 (T80). The resulting nanodelivery systems were characterized and the results supported the encapsulation of the fungicide into the micelles of the surfactants. We have investigated in detail the size-dependent effects of the as-synthesized micelles towards the inhibition growth of Ganoderma Boninense fungi. All the nanodelivery systems indicate that their size decreased as the surfactant concentration was increased, and it directly affects the fungal inhibition. It was also found that Tween 80, a non-ionic surfactant gave the lowest effective concentration, the EC50 value of 2, on the pathogenic fungus Ganoderma boninense compared to the other anionic surfactants; SDBS and SDS. This study opens up a new generation of agronanofungicide of better efficacy for Ganoderma disease treatment.
    Matched MeSH terms: Drug Delivery Systems*
  11. Rehman K, Zulfakar MH
    Drug Dev Ind Pharm, 2014 Apr;40(4):433-40.
    PMID: 23937582 DOI: 10.3109/03639045.2013.828219
    Transdermal drug delivery systems are a constant source of interest because of the benefits that they afford in overcoming many drawbacks associated with other modes of drug delivery (i.e. oral, intravenous). Because of the impermeable nature of the skin, designing a suitable drug delivery vehicle that penetrates the skin barrier is challenging. Gels are semisolid formulations, which have an external solvent phase, may be hydrophobic or hydrophilic in nature, and are immobilized within the spaces of a three-dimensional network structure. Gels have a broad range of applications in food, cosmetics, biotechnology, pharmatechnology, etc. Typically, gels can be distinguished according to the nature of the liquid phase, for example, organogels (oleogels) contain an organic solvent, and hydrogels contain water. Recent studies have reported other types of gels for dermal drug application, such as proniosomal gels, emulgels, bigels and aerogels. This review aims to introduce the latest trends in transdermal drug delivery via traditional hydrogels and organogels and to provide insight into the latest gel types (proniosomal gels, emulgels, bigels and aerogels) as well as recent technologies for topical and transdermal drug delivery.
    Matched MeSH terms: Drug Delivery Systems*
  12. Venkatesh G, Majid MI, Mansor SM, Nair NK, Croft SL, Navaratnam V
    Drug Dev Ind Pharm, 2010 Jun;36(6):735-45.
    PMID: 20136493 DOI: 10.3109/03639040903460446
    The aim of this study was to prepare a lipid-based self-microemulsifying drug delivery system (SMEDDS) to increase the solubility and oral bioavailability of a poorly water-soluble compound, buparvaquone (BPQ).
    Matched MeSH terms: Drug Delivery Systems/methods*
  13. Haseeb MT, Hussain MA, Bashir S, Ashraf MU, Ahmad N
    Drug Dev Ind Pharm, 2017 Mar;43(3):409-420.
    PMID: 27808567 DOI: 10.1080/03639045.2016.1257017
    CONTEXT: Advancement in technology has transformed the conventional dosage forms to intelligent drug delivery systems. Such systems are helpful for targeted and efficient drug delivery with minimum side effects. Drug release from these systems is governed and controlled by external stimuli (pH, enzymes, ions, glucose, etc.). Polymeric biomaterial having stimuli-responsive properties has opened a new area in drug delivery approach.

    OBJECTIVE: Potential of a polysaccharide (rhamnogalacturonan)-based hydrogel from Linseeds (Linum usitatissimum L.) was investigated as an intelligent drug delivery material.

    MATERIALS AND METHODS: Different concentrations of Linseed hydrogel (LSH) were used to prepare caffeine and diacerein tablets and further investigated for pH and salt solution-responsive swelling, pH-dependent drug release, and release kinetics. Morphology of tablets was observed using SEM.

    RESULTS: LSH tablets exhibited dynamic swelling-deswelling behavior with tendency to swell at pH 7.4 and in deionized water while deswell at pH 1.2, in normal saline and ethanol. Consequently, pH controlled release of the drugs was observed from tablets with lower release (<10%) at pH 1.2 and higher release at pH 6.8 and 7.4. SEM showed elongated channels in swollen then freeze-dried tablets.

    DISCUSSION: The drug release was greatly influenced by the amount of LSH in the tablets. Drug release from LSH tablets was governed by the non-Fickian diffusion.

    CONCLUSIONS: These finding indicates that LSH holds potential to be developed as sustained release material for tablet.

    Matched MeSH terms: Drug Delivery Systems/methods*
  14. Nawaz A, Wong TW
    Carbohydr Polym, 2017 Feb 10;157:906-919.
    PMID: 27988008 DOI: 10.1016/j.carbpol.2016.09.080
    This study investigated transdermal drug delivery mechanisms of chitosan nanoparticles with the synergistic action of microwave in skin modification. Chitosan nanoparticles, with free or conjugated 5-fluorouracil, were prepared by nanospray-drying technique. Their transdermal drug delivery profiles across untreated and microwave-treated skins (2450MHz 5min, 5+5min; 3985MHz 5min) were examined. Both constituent materials of nanoparticles and drug encapsulation were required to succeed transdermal drug delivery. The drug transport was mediated via nanoparticles carrying drug across the skin and/or diffusion of earlier released drug molecules from skin surfaces. The drug/nanoparticles transport was facilitated through constituent nanoparticles and microwave fluidizing protein/lipid domains of epidermis and dermis (OH, NH, CH, CN) and dermal trans-to-gauche lipid conformational changes. The microwave induced marked changes to the skin ceramide content homogeneity. The chitosan nanoparticles largely affected the palmitic acid and keratin domains. Combined microwave and nanotechnologies synergize transdermal drug delivery.
    Matched MeSH terms: Drug Delivery Systems*
  15. Al Madfai F, Valah B, Zaidi STR, Wanandy T, Ming LC, Peterson GM, et al.
    J Clin Pharm Ther, 2018 Aug;43(4):530-535.
    PMID: 29500838 DOI: 10.1111/jcpt.12674
    WHAT IS KNOWN AND OBJECTIVE: Continuous infusion of dobutamine plays an important role in the management of patients with end-stage heart failure. Home infusion of dobutamine using a continuous ambulatory delivery device (CADD) facilitates the management of patients in their home, avoiding complications associated with long-term hospitalization. However, the stability of dobutamine in CADD is currently unknown. Therefore, this study investigated the physicochemical stability of dobutamine in CADDs at three different temperatures over various time points.

    METHODS: Six CADDs (three containing dobutamine 10 mg/mL in 0.9% sodium chloride and three containing dobutamine 10 mg/mL in 5% glucose) were prepared and stored at 4°C for 7 days, followed by 12 hours at 35°C and then for another 12 hours at 25°C. An aliquot (n = 3) was withdrawn aseptically at 0, 24, 48, 72, 96, 120, 144 and 168 hours when stored at 4°C, and at 0, 6 and 12 hours when stored at the other two temperatures. Each sample was analysed for dobutamine concentration using a stability-indicating high-performance liquid chromatography. All the samples were also evaluated for change in pH, colour and for particle content.

    RESULTS AND DISCUSSION: No evidence of particle formation, colour or pH change was observed throughout the study period. Dobutamine, when admixed with 0.9% sodium chloride or 5% glucose, was found to be chemically stable for at least 168 hours at 4°C and for another 12 hours at 35°C and for another 12 hours at 25°C.

    WHAT IS NEW AND CONCLUSIONS: Our findings will allow health professionals to provide a weekly supply of dobutamine-containing CADDs to patients for home infusions. Continuous infusion over a 24-hour period using one CADD per day will also decrease the number of exchanges required and thus reduce the risk of catheter-related bloodstream infections.

    Matched MeSH terms: Drug Delivery Systems/methods
  16. Md Moshikur R, Shimul IM, Uddin S, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2022 Dec 21;14(50):55332-55341.
    PMID: 36508194 DOI: 10.1021/acsami.2c15636
    The transdermal delivery of hydrophilic drugs remains challenging owing to their poor ability to permeate the skin; formulation with oil media is difficult without adding chemical permeation enhancers or co-solvents. Herein, we synthesized 12 oil-miscible ionic liquid (IL) drugs comprising lidocaine-, imipramine-, and levamisole (Lev)-hydrochloride with fatty acid permeation enhancers, i.e., laurate, oleate, linoleate, and stearate as counterions. A set of in vitro and in vivo studies was performed to investigate the potency and deliverability of the transdermal drug formulations. All of the synthesized compounds were freely miscible with pharmaceutically acceptable solvents/agents (i.e., ethanol, N-methyl pyrrolidone, Tween 20, and isopropyl myristate (IPM)). In vitro permeation studies revealed that the oleate-based Lev formulation had 2.6-fold higher skin permeation capability than the Lev salts and also superior ability compared with the laurate-, linoleate-, and stearate-containing samples. Upon in vivo transdermal administration to mice, the peak plasma concentration, elimination half-life, and area under the plasma concentration curve values of Lev-IL were 4.6-, 2.9-, and 5.4-fold higher, respectively, than those of the Lev salt. Furthermore, in vitro skin irritation and in vivo histological studies have demonstrated that Lev-IL has excellent biocompatibility compared with a conventional ionic liquid-based carrier. The results indicate that oil-miscible IL-based drugs provide a simple and scalable strategy for the design of effective transdermal drug delivery systems.
    Matched MeSH terms: Drug Delivery Systems/methods
  17. Rasouli E, Basirun WJ, Johan MR, Rezayi M, Darroudi M, Shameli K, et al.
    J Cell Biochem, 2019 04;120(4):6624-6631.
    PMID: 30368873 DOI: 10.1002/jcb.27958
    In the present research, we report a greener, faster, and low-cost synthesis of gold-coated iron oxide nanoparticles (Fe3 O4 /Au-NPs) by different ratios (1:1, 2:1, and 3:1 molar ratio) of iron oxide and gold with natural honey (0.5% w/v) under hydrothermal conditions for 20 minutes. Honey was used as the reducing and stabilizing agent, respectively. The nanoparticles were characterized by X-ray diffraction (XRD), UV-visible spectroscopy, field emission scanning electron microscope (FESEM), energy-dispersive X-ray spectroscopy (EDXS), transmission electron microscopy (TEM), selected area electron diffraction (SAED), vibrating sample magnetometer (VSM), and fourier transformed infrared spectroscopy (FT-IR). The XRD analysis indicated the presence of Fe3 O4 /Au-NPs, while the TEM images showed the formation of Fe3 O4 /Au-NPs with diameter range between 3.49 nm and 4.11 nm. The VSM study demonstrated that the magnetic properties were decreased in the Fe3 O4 /Au-NPs compared with the Fe3 O4 -NPs. The cytotoxicity threshold of Fe3 O4 /Au-NPs in the WEHI164 cells was determined by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. It was demonstrated no significant toxicity in higher concentration up to 140.0 ppm which can become the main candidates for biological and biomedical applications, such as drug delivery.
    Matched MeSH terms: Drug Delivery Systems*
  18. Mehta M, Prasher P, Sharma M, Shastri MD, Khurana N, Vyas M, et al.
    Med Hypotheses, 2020 Nov;144:110254.
    PMID: 33254559 DOI: 10.1016/j.mehy.2020.110254
    The highly contagious coronavirus, which had already affected more than 2 million people in 210 countries, triggered a colossal economic crisis consequently resulting from measures adopted by various goverments to limit transmission. This has placed the lives of many people infected worldwide at great risk. Currently there are no established or validated treatments for COVID-19, that is approved worldwide. Nanocarriers may offer a wide range of applications that could be developed into risk-free approaches for successful therapeutic strategies that may lead to immunisation against the severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) which is the primary causative organism that had led to the current COVID-19 pandemic. We address existing as well as emerging therapeutic and prophylactic approaches that may enable us to effectively combat this pandemic, and also may help to identify the key areas where nano-scientists can step in.
    Matched MeSH terms: Drug Delivery Systems*
  19. Rahman HS, Othman HH, Hammadi NI, Yeap SK, Amin KM, Abdul Samad N, et al.
    Int J Nanomedicine, 2020;15:2439-2483.
    PMID: 32346289 DOI: 10.2147/IJN.S227805
    Many types of research have distinctly addressed the efficacy of natural plant metabolites used for human consumption both in cell culture and preclinical animal model systems. However, these in vitro and in vivo effects have not been able to be translated for clinical use because of several factors such as inefficient systemic delivery and bioavailability of promising agents that significantly contribute to this disconnection. Over the past decades, extraordinary advances have been made successfully on the development of novel drug delivery systems for encapsulation of plant active metabolites including organic, inorganic and hybrid nanoparticles. The advanced formulas are confirmed to have extraordinary benefits over conventional and previously used systems in the manner of solubility, bioavailability, toxicity, pharmacological activity, stability, distribution, sustained delivery, and both physical and chemical degradation. The current review highlights the development of novel nanocarrier for plant active compounds, their method of preparation, type of active ingredients, and their biomedical applications.
    Matched MeSH terms: Drug Delivery Systems*
  20. Gul I, Yunus U, Ajmal M, Bhatti MH, Chaudhry GE
    Biomed Mater, 2021 Aug 31;16(5).
    PMID: 34375958 DOI: 10.1088/1748-605X/ac1c61
    Cancer is the leading cause of death worldwide. Capecitabine (CP) shows severe side effects because of early metabolism in stomach that affects the normal cells and organs, particularly liver and stomach. In this scope, we report the biocompatible, nontoxic polymeric thin films loaded with anti-cancer drug, CP for target specific, sublingual delivery of CP. Chitosan (CS) and polyvinyl alcohol (PVA) were used as biodegradable polymers alongwith glutaraldehyde (GLA) cross linker. CP-loaded thin films (TFCP1-TFCP5) were fabricated by solvent casting method. The results of Fourier transform infrared spectroscopy confirmed the presence of CP and polymers (CS and PVA) with GLA which binds through hydrogen bonding, and compatibility of drug with different excipients. Thermogravemetric analysis showed that the thin films are highly stable while differential scanning calorimeter thermograms confirmed the complete miscibility/entrapment of CP within PVA/CS thin film matrix. X-ray diffraction patterns revealed the molecular ineractions between CP and polymer matrix. High degree of swelling index of thin films at pH 7.4 was observed in comparison to pH 5.5. CP release studies in acetate (pH 5.5) and phosphate buffer (pH 7.4) showed that the thin films swell and result in drug diffusion faster in phosphate buffer through diffusion governed by Higuchi's model. Cytotoxicity results displayed that CPTFs killed MCF-7 and T47D (human breast adenocarcinoma) cells more effectively as compared to CP alone. The results of adhesion assay also showed that the PVA and CS both are safe and biocompatible. TFCP1 and TFCP3 thin films efficiently induced the apoptosis as compared to CP alone. The improved ability of TFCP1 and TFCP3 to induce cytotoxicity in MCF-7 cells reflects the potential of these thin films for targeted drug delivery. The CPTFs were stable for 4 months at 4 °C/60% ± 2%RH and 25 °C/70% ± 2%RH. In conclusion, the thin film formulations showed target specific controlled and burst release properties and thus could prove to be effective for human breast cancer treatment.
    Matched MeSH terms: Drug Delivery Systems/methods*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links