Displaying publications 241 - 260 of 335 in total

Abstract:
Sort:
  1. Wahab NZA, Azizul A, Ibrahim N
    Iran J Microbiol, 2020 Oct;12(5):460-465.
    PMID: 33604002 DOI: 10.18502/ijm.v12i5.4608
    Background and Objectives: Catharanthus roseus is generally used to treat many diseases in folklore remedies. The present study is aimed at determining phytochemical constituents, cytotoxicity and antiviral activities for crude extract of the plant.

    Materials and Methods: The whole plant of C. roseus was extracted using methanol extraction method. Phytochemical qualitative screening was carried out for C. roseus extract according to standard procedures used to test for the presence of alkaloid, saponin, terpenoid and steroid. Cytotoxicity was assessed using 3-(4,5-dimethylthiazol-2,5-diphenyltetrazolium bromide (MTT) assay. Plaque reduction assays were carried out to evaluate the antiviral activity of C. roseus extract against herpes simplex virus type 1 (HSV-1). These include post-treatment, pre-treatment and virucidal assays.

    Results: C. roseus extract contain secondary metabolites such as alkaloid, saponin and terpenoid but does not contain steroid. Cytotoxicity screening against Vero cells using MTT assay showed that the CC50 values for crude extract of C. roseus was 0.5 mg/mL. The extract prepared from C. roseus possesses phytochemical compound that was non-cytotoxic to the cell with potential antiviral activity. Plaque reduction assays against herpes simplex virus type 1 (HSV-1) showed that the selective indices (SI = CC50 / EC50) of C. roseus extract in post-treatment, pre-treatment and virucidal assays were 36, 20 and 4.7 respectively. The results revealed that the extract prepared from C. roseus possesses phytochemical compound that was non-cytotoxic to the cell with potential antiviral activity.

    Conclusion: This study showed that C. roseus extract has promising potential to be explored as anti-HSV-1 agent regardless of the mode of treatment.

    Matched MeSH terms: Alkaloids
  2. WAN ASIAH WAN SUKAIRI, LAILI CHE ROSE, ASNUZILAWATI ASARI, RAZIFAH MOHD RAZALI
    MyJurnal
    This study investigates the characteristics of an antioxidant cream made from the methanol extract of Piper sarmentosum leaves, which is locally known as the wild betel or pokok kadok in Malay. The secondary metabolites of the leaves were subjected to phytochemical tests to detect the presence of natural compounds. Antioxidant activity was described by its total phenolic content (TPC) and total flavonoid content (TFC), which was assessed by 2,2-Diphenyl-1-picrylhydrazyl (DPPH) assay. A phase diagram was constructed to find a possible region to formulate an antioxidant cream. In phytochemical screening, the methanolic extract showed positive presence of alkaloids, flavonoids, steroids, terpenoids and tannins. In quantitative analysis of antioxidative components, besides having significantly higher TFC content compared with quercetin (P
    Matched MeSH terms: Alkaloids
  3. MISA HARSRINURI RAIHANI SAIRUN, NORHAYATI YUSUF, NORHAYATI YUSUF, NURUL HUDA ABDUL WAHAB, NURUL HUDA ABDUL WAHAB
    MyJurnal
    A study was conducted on the chemical and biological properties of three different species of Mangifera i.e. Mangifera pajang, M. indica L., and M. kemanga leaves obtained from Pitas, Sabah. The aims of this study were to determine the presence of secondary metabolites as well as the antioxidative activities especially the catalase (CAT) and guiacol peroxidase specific activities (gPOD) in the leaves part of these three species. The extraction of these samples was carried out using three different polarities of solvents: hexane, ethyl acetate, and methanol. The total percentage of the crude extract of is 7.30% for M. pajang, 12.87% for M. indica and 7.98% for M. kemanga. Phytochemical screening was performed with various tests for each of the crude extracts. The results showed that these three species gave positive results for alkaloids, saponins, flavonoids, phenols, carbohydrates, phytosterols, and tannins metabolites. Based on the tests, CAT specific activities were significantly higher in the leaves of M. pajang with 4.35 ± 1.18 units/mg protein compared to M. indica L. and M. kemanga. The guaiacol peroxidase (gPOD) specific activities showed that M. indica L. has the highest activity with the value of 0.0047 ± 0.0004 units/mg protein.
    Matched MeSH terms: Alkaloids
  4. Solihah, M.A., Wan Rosli, W.I., Nurhanan, A.R.
    MyJurnal
    In the present study, Malaysian Zea mays hair extracts are screened for the occurrence of bioactive compounds. The results positively showed the present of flavonoids, saponin, tannins, phlobatannins, phenols, alkaloids and cardiac glycosides in both aqueous and methanolic extract of Zea mays hair. Terpenoid compounds however present only in the methanolic extract sample. In addition, the total phenolic content (TPC) in aqueous extract was significantly higher (42.71 + 0.87 µg/g of tannic acid equivalent (TAE)) compared to methanolic extract (40.38 + 1.10 µg/g of TAE). The findings suggested that phytochemicals present in Zea mays hair are potentially beneficial as therapeutic and antioxidative agents in pharmaceuticals, food and other related industries.
    Matched MeSH terms: Alkaloids
  5. Lim, C.M., Ee, G.C.L., Rahmani, M., Bong, C.F.J.
    MyJurnal
    An investigation, on the roots of Piper nigrum and the aerial parts of Piper betle, has yielded several alkaloids. The dried root sample of Piper nigrum was extracted using various solvents in increasing polarity. The dried aerial part of Piper betle was extracted using the Soxhlet extraction method. The alkaloids isolated were pellitorine(1), (E)-1-[3’,4’- (Methylenedioxy)cinnamoyl]piperidine(2), piperine(3), piperolactam D(4), cepharadione A(5), and 2,4-tetradecadienoic acid isobutyl amide(6). These compounds were isolated using chromatographic methods, while the elucidation of the structures was carried out using MS, IR and NMR techniques. The xtracts of Piper nigrum and Piper betle were also tested for cytotoxicity activities. This is the first report on E)-1-[3’,4’-(Methylenedioxy)cinnamoyl] piperidine(2) from Piper nigrum as a natural product.
    Matched MeSH terms: Alkaloids
  6. Babiker, F., Jamal, P., Mirghani, M.E.S., Ansari, A.H.
    MyJurnal
    This study aimed at investigating the presence of alkaloids and other chemical constituents in Datura stramonium (Saikaran, Jimson weed). All parts of the plant were dried, crushed and then underwent extraction by soxhlet and maceration methods. The solvents used in these methods were normal hexane (nonpolar) and ethanol (polar). Thin Layer Chromatography (TLC) and FTIR techniques were used to analyse the chemical components of jimson weed. The results showed the presence of hyoscine in all plant parts while atropine in the seeds only. The best separation was found to be when the solvent system was acetone: water: ammonia (90:07:03). Maceration method is the best and cost effective procedure for extraction.
    Matched MeSH terms: Alkaloids
  7. Malik A, Arooj M, Butt TT, Zahid S, Zahid F, Jafar TH, et al.
    Drug Des Devel Ther, 2018;12:1431-1443.
    PMID: 29872266 DOI: 10.2147/DDDT.S154169
    Background: The present study investigates the hepato- and DNA-protective effects of standardized extracts of Cleome brachycarpa (cabralealactone), Solanum incanum (solasodin), and Salvadora oleioides (salvadorin) in rats.

    Materials and methods: Hepatotoxicity was induced with intraperitoneal injection of carbon tetrachloride (CCl4) (1 mL/kg b.wt.) once a week for 12 weeks. The hepato- and DNA protective effects of the extracts in different combinations were compared with that of a standard drug Clavazin (200 mg/kg b.wt.). Tissue alanine aminotransferase, alpha-fetoprotein, tumor necrosis factor alpha (TNF-α), isoprostanes-2α, malondialdehyde, and 8-hydroxydeoxyguanosine, the significant hallmarks of oxidative stress, were studied.

    Results: Histopathological findings of the liver sections from the rat group which received CCl4+cabralealactone, solasodin, and salvadorin demonstrated improved centrilobular hepatocyte regeneration with moderate areas of congestion and infiltration comparable with Clavazin. For in silico study, the identified compounds were subjected to molecular docking with cyclooxygenase-2 and TNF-α followed by a molecular dynamics study, which indicated their potential as anti-inflammatory agents.

    Conclusion: Cabralealactone, solasodin, and salvadorin confer some hepatoprotective and DNA-damage protective effects against CCl4-induced toxicity. They successfully restored the normal architecture of hepatocytes and have the potential to be used as inhibitor to main culprits, that is, cyclooxygenase-2 and TNF-α. They can combat oxidative stress and liver injuries both as mono and combinational therapies. However, combination therapy has more ameliorating effects.

    Matched MeSH terms: Solanaceous Alkaloids/isolation & purification; Solanaceous Alkaloids/pharmacology*; Solanaceous Alkaloids/chemistry
  8. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids
  9. Ahmed, Y., Rahman, S., Akhtar, P., Islam, F., Rahman, M., Yaakob, Z.
    MyJurnal
    General phytochemical screening of the leaves of Saurauia roxburghii (Actinidiaceae) revealed the presence of alkaloids, flavonoids, glycosides, O-glycosides, terpenoids, carbohydrates, steroids, reducing sugar, tannins, phlobatannins and saponin are present in this plant whereas cardiac glycosides are absent. Two steroid compounds were isolated from the n-hexane extract of the leaves from S. roxburghii. Based on the spectral evidence IR, 1H-NMR and 13C-NMR, structures were determined to be stigmasterol (1) and β-sitosterol (2) This is the first report so far of occurrence and details spectroscopic description of these compounds from S. roxburghii.
    Matched MeSH terms: Alkaloids
  10. Iman V, Mohan S, Abdelwahab SI, Karimian H, Nordin N, Fadaeinasab M, et al.
    Drug Des Devel Ther, 2017;11:103-121.
    PMID: 28096658 DOI: 10.2147/DDDT.S115135
    Therapy that directly targets apoptosis and/or inflammation could be highly effective for the treatment of cancer. Murraya koenigii is an edible herb that has been traditionally used for cancer treatment as well as inflammation. Here, we describe that girinimbine, a carbazole alkaloid isolated from M. koenigii, induced apoptosis and inhibited inflammation in vitro as well as in vivo. Induction of apoptosis in human colon cancer cells (HT-29) by girinimbine revealed decreased cell viability in HT-29, whereas there was no cytotoxic effect on normal colon cells. Changes in mitochondrial membrane potential, nuclear condensation, cell permeability, and cytochrome c translocation in girinimbine-treated HT-29 cells demonstrated involvement of mitochondria in apoptosis. Early-phase apoptosis was shown in both acridine orange/propidium iodide and annexin V results. Girinimbine treatment also resulted in an induction of G0/G1 phase arrest which was further corroborated with the upregulation of two cyclin-dependent kinase proteins, p21 and p27. Girinimbine treatment activated apoptosis through the intrinsic pathway by activation of caspases 3 and 9 as well as cleaved caspases 3 and 9 which ended by triggering the execution pathway. Moreover, apoptosis was confirmed by downregulation of Bcl-2 and upregulation of Bax in girinimbine-treated cells. In addition, the key tumor suppressor protein, p53, was seen to be considerably upregulated upon girinimbine treatment. Induction of apoptosis by girinimbine was also evidenced in vivo in zebrafish embryos, with results demonstrating significant distribution of apoptotic cells in embryos after a 24-hour treatment period. Meanwhile, anti-inflammatory action was evidenced by the significant dose-dependent girinimbine inhibition of nitric oxide production in lipopolysaccharide/interferon-gamma-induced cells along with significant inhibition of nuclear factor-kappa B translocation from the cytoplasm to nucleus in stimulated RAW 264.7 cells. Girinimbine was also shown to have considerable antioxidant activity whereby 20 μg/mL of girinimbine was equivalent to 82.17±1.88 μM of Trolox. In mice with carrageenan-induced peritonitis, oral pretreatment with girinimbine helped limit total leukocyte migration (mainly of neutrophils), and reduced pro-inflammatory cytokine levels (interleukin-1beta and tumor necrosis factor-alpha) in the peritoneal fluid. These findings strongly suggest that girinimbine could act as a chemopreventive and/or chemotherapeutic agent by inducing apoptosis while suppressing inflammation. There is a potential for girinimbine to be further investigated for its applicability in treating early stages of cancer.
    Matched MeSH terms: Alkaloids/isolation & purification; Alkaloids/pharmacology*; Alkaloids/chemistry
  11. Heida Nadia Zulkefli, Jamaludin Mohamad, Nurhayati Zainal Abidin
    Sains Malaysiana, 2013;42:697-706.
    Tinospora crispa and Tabernaemontana corymbosa have been used traditionally to treat fever, diabetes, rheumatism and sinusitis. The objective of this study was to evaluate the antioxidant activity of Tinospora crispa and Tabernaemontana corymbosa. The presence of apigenin and magnoflorine was detected using LCMS/MS in Tinospora crispa (Patawali) whereas appararicine, voafinine, conodusarine, conodurine, voacamine and voacangine were detected in Tabernaemontana corymbosa (Susur kelapa) methanol extract. The stem extract of Tinospora crispa showed high antioxidant activity in the following order: DPPH radical scavenging, reducing power and metal chelating assay (98.8%, 0.957, 81.97%) than Tabernaemontana corymbosa of leaves (90.04%, 0.652, 69.64%), stem (82.78%, 0.819, 36.70%) and root extracts (63.25%, 0.469, 51.56%), respectively. The high antioxidant activity in the stem extract of Tinospora crispa is due to the presence of apigenin and magnoflorine. The high antioxidant activity in Tabernaemontana corymbosa extract is due to its high phenol contents. There were significant linear positive correlation (r=0.788, p<0.001, r2=0.621) between the total phenolic content and DPPH free radical scavenging assay in the crude extracts of Tinospora crispa and Tabernaemontana corymbosa. Meanwhile, a significant moderate positive correlation was observed between the total phenolic content and ferric reducing power assay (r= 0.556, p<0.05, r2= 0.309). However, there was no significant difference in the correlation coefficient of total phenolic content and metal chelating assay.
    Matched MeSH terms: Indole Alkaloids
  12. Saleem H, Htar TT, Naidu R, Anwar S, Zengin G, Locatelli M, et al.
    Plants (Basel), 2020 Mar 20;9(3).
    PMID: 32245104 DOI: 10.3390/plants9030388
    The plants of the Bougainvillea genus are widely explored regarding nutritive and medicinal purposes. In this study, dichloromethane (DCM) and methanol (MeOH) extracts of Bougainvillea glabra (Choisy.) aerial and flower parts were analyzed for high-performance liquid chromatography with photodiode array detection (HPLC-PDA), ultra-high-performance liquid chromatography-mass spectrometry (UHPLC-MS) phytochemical composition, and enzyme inhibition potential against key enzymes involved in diabetes (α-amylase), skin problems (tyrosinase), and inflammatory disorders (lipoxygenase (LOX)). HPLC-PDA quantification revealed the identification of nine different polyphenolics, amongst which both flower extracts were richest. The flower MeOH extract contained the highest amount of catechin (6.31 μg/g), gallic acid (2.39 μg/g), and rutin (1.26 μg/g). However, none of the quantified compounds were detected in the aerial DCM extract. UHPLC-MS analysis of DCM extracts revealed the tentative identification of 27 secondary metabolites, where the most common belonged to terpenoid, alkaloid, and phenolic derivatives. Similarly, for enzyme inhibition, all the extracts presented moderate activity against tyrosinase and α-amylases, whereas, for LOX, both methanolic extracts showed higher percentage inhibition compared with DCM extracts. Based on our findings, B. glabra could be regarded as a perspective starting material for designing novel pharmaceuticals.
    Matched MeSH terms: Alkaloids
  13. Ahmad W, Husain I, Ahmad N, Amir M, Sarafroz M, Ansari MA, et al.
    3 Biotech, 2020 Apr;10(4):165.
    PMID: 32206499 DOI: 10.1007/s13205-020-2154-1
    Boerhavia diffusa (BD) Linn. (Nyctaginaceae) is one of the most commonly used herbs in the Indian traditional system of medicine for the urinary disorders. The aim of the current investigation was to carry out initiation, development, and maintenance of BD callus cultures and quantitative estimation of punarnavine in plant and callus extracts. Leaves and stem of BD were used as explant for the tissue culture studies using Murashige and Skoog (MS) basal medium. MS Media comprising 2,4-Dichlorophenoxy acetic acid (2,4-D) (1 ppm) and 2,4-D (1 ppm) + Indole-3-acetic acid (IAA) (1.0 ppm) were found to yield friable callus from leaf explant; similarly, 2,4-D (0.3 ppm) + IAA (0.75 ppm) + Kinetin (0.3 ppm) and 2,4-D (0.5 ppm) + Naphthalene acetic acid (NAA) (1.5 ppm) + Kinetin (0.3 ppm) were found to yield friable callus from the stem explant. High-performance thin-layer chromatography method was been developed for the quantitative estimation of punarnavine (Rf = 0.73) using mobile phase containing toluene: ethyl acetate: formic acid in the ratio (7.0:2.5:0.7, v/v/v) at 262 nm. The validated method was found linear (r2 = 0.9971) in a wide range (100-1000 ng spot-1), precise, accurate, and robust. The values of limit of detection, LOD = 30.3 ng spot-1, and limit of quantification, LOQ = 100.0 ng spot-1. The robustness of the method was proved by applying the Box-Behnken design (BBD). The developed method found appropriate for the quality control of medicinal plants containing punarnavine as a constituent.
    Matched MeSH terms: Alkaloids
  14. Hassan R, Pike See C, Sreenivasan S, Mansor SM, Müller CP, Hassan Z
    Front Psychiatry, 2020;11:411.
    PMID: 32457670 DOI: 10.3389/fpsyt.2020.00411
    Background: Opiate addiction is a major health problem in many countries. A crucial component of the medical treatment is the management of highly aversive opiate withdrawal signs, which may otherwise lead to resumption of drug taking. In a medication-assisted treatment (MAT), methadone and buprenorphine have been implemented as substitution drugs. Despite MAT effectiveness, there are still limitations and side effects of using methadone and buprenorphine. Thus, other alternative therapies with less side effects, overdosing, and co-morbidities are desired. One of the potential pharmacotherapies may involve kratom's major indole alkaloid, mitragynine, since kratom (Mitragyna speciosa Korth.) preparations have been reported to alleviate opiate withdrawal signs in self-treatment in Malaysian opiate addicts.

    Methods: Based on the morphine withdrawal model, rats were morphine treated with increasing doses from 10 to 50 mg/kg twice daily over a period of 6 days. The treatment was discontinued on day 7 in order to induce a spontaneous morphine abstinence. The withdrawal signs were measured daily after 24 h of the last morphine administration over a period of 28 abstinence days. In rats that developed withdrawal signs, a drug replacement treatment was given using mitragynine, methadone, or buprenorphine and the global withdrawal score was evaluated.

    Results: The morphine withdrawal model induced profound withdrawal signs for 16 days. Mitragynine (5-30 mg/kg; i.p.) was able to attenuate acute withdrawal signs in morphine dependent rats. On the other hand, smaller doses of methadone (0.5-2 mg/kg; i.p.) and buprenorphine (0.4-1.6 mg/kg; i.p.) were necessary to mitigate these effects.

    Conclusions: These data suggest that mitragynine may be a potential drug candidate for opiate withdrawal treatment.

    Matched MeSH terms: Secologanin Tryptamine Alkaloids
  15. Abdul Wahab SM, Jantan I, Haque MA, Arshad L
    Front Pharmacol, 2018;9:661.
    PMID: 29973884 DOI: 10.3389/fphar.2018.00661
    The use of anti-inflammatory natural products to treat inflammatory disorders for cancer prevention and therapy is an appealing area of interest in the last decades. Annona muricata L. is one of the many plant extracts that have been explored owing to their anti-inflammatory and anticancer effects. Different parts of A. muricata especially the leaves have been used for various ethnomedicinal purposes by traditional healers to treat several diseases including cancer, inflammation, diabetes, liver diseases, and abscesses. Some of these experience-based claims on the use of the plant have been transformed into evidence-based information by scientific investigations. The leaves of the plant have been extensively investigated for its diverse pharmacological aspects and found eminent for anti-inflammatory and anticancer properties. However, most studies were not on the bioactive isolates which were responsible for the activities but were based on crude extracts of the plant. In this comprehensive review, all significant findings from previous investigations till date on the leaves of A. muricata, specifically on their anti-inflammatory and anticancer activities have been compiled. The toxicology of the plant which has been shown to be due to the presence of neurotoxic annaceous acetogenins and benzyltetrahydro-isoquinoline alkaloids has also been updated to provide recent information on its safety aspects. The present knowledge of the plant has been critically assessed, aimed at providing direction toward improving its prospect as a source of potential anti-inflammatory and anticancer agents. The analysis will provide a new path for ensuring research on this plant to discover new agents to treat inflammatory diseases and cancer. Further in vitro and in vivo studies should be carried out to explore the molecular mechanisms underlying their anti-inflammatory responses in relation to anticancer activity and more detail toxicity study to ensure they are safe for human consumption. Sufficient preclinical data and safety data generated will allow clinical trials to be pursued on this plant and its bioactive compounds.
    Matched MeSH terms: Alkaloids
  16. Hassan Z, Bosch OG, Singh D, Narayanan S, Kasinather BV, Seifritz E, et al.
    Front Psychiatry, 2017;8:152.
    PMID: 28868040 DOI: 10.3389/fpsyt.2017.00152
    A feature of human culture is that we can learn to consume chemical compounds, derived from natural plants or synthetic fabrication, for their psychoactive effects. These drugs change the mental state and/or the behavioral performance of an individual and can be instrumentalized for various purposes. After the emergence of a novel psychoactive substance (NPS) and a period of experimental consumption, personal and medical benefits and harm potential of the NPS can be estimated on evidence base. This may lead to a legal classification of the NPS, which may range from limited medical use, controlled availability up to a complete ban of the drug form publically accepted use. With these measures, however, a drug does not disappear, but frequently continues to be used, which eventually allows an even better estimate of the drug's properties. Thus, only in rare cases, there is a final verdict that is no more questioned. Instead, the view on a drug can change from tolerable to harmful but may also involve the new establishment of a desired medical application to a previously harmful drug. Here, we provide a summary review on a number of NPS for which the neuropharmacological evaluation has made important progress in recent years. They include mitragynine ("Kratom"), synthetic cannabinoids (e.g., "Spice"), dimethyltryptamine and novel serotonergic hallucinogens, the cathinones mephedrone and methylone, ketamine and novel dissociative drugs, γ-hydroxybutyrate, γ-butyrolactone, and 1,4-butanediol. This review shows not only emerging harm potentials but also some potential medical applications.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids
  17. Singh D, Müller CP, Murugaiyah V, Hamid SBS, Vicknasingam BK, Avery B, et al.
    J Ethnopharmacol, 2018 Mar 25;214:197-206.
    PMID: 29248450 DOI: 10.1016/j.jep.2017.12.017
    ETHNOPHARMACOLOGICAL RELEVANCE: Kratom (Mitragyna speciosa Korth.) from the Rubiaceae family is an indigenous tropical medicinal tree of Southeast Asia. Kratom leaves have been used for decades in Malaysia and Thailand in traditional context for its perceived vast medicinal value, and as a mild stimulant among manual labourers. Kratom consumption has been reported to cause side-effects in kratom users.

    AIM OF THE STUDY: To evaluate kratom's effects towards hematological and clinical-chemistry parameters among regular kratom users in Malaysia.

    METHODS: A total of 77 subjects (n=58 regular kratom users, and n=19 healthy controls) participated in this cross-sectional study. All the surveys were conducted through face-to-face interview to elicit subject's socio-demographic characteristics and kratom use history. A full-blood test was also administered. Laboratory analysis was conducted using GC-MS to determine mitragynine content in the acquired kratom samples in order to relate mitragynine consumption with possible alterations in the blood parameters of kratom users.

    RESULTS: Findings showed that there were no significant differences in the hematological and clinical-chemistry parameters of traditional kratom users and healthy controls, except for HDL and LDL cholesterol values; these were found to be above the normal reference range for the former. Similarly, long-term kratom consumption (>5 years), and quantity of daily kratom use (≥3 ½ glasses; mitragynine content 76.3-114.8mg) did not appear to alter the hematological and biochemical parameters of kratom users.

    CONCLUSION: These data suggest that even long-term and heavy kratom consumption did not significantly alter the hematological and clinical-chemistry parameters of kratom users in a traditional setting.

    Matched MeSH terms: Secologanin Tryptamine Alkaloids/administration & dosage*; Secologanin Tryptamine Alkaloids/adverse effects; Secologanin Tryptamine Alkaloids/isolation & purification
  18. Al-Khdhairawi AAQ, Krishnan P, Mai CW, Chung FF, Leong CO, Yong KT, et al.
    J Nat Prod, 2017 10 27;80(10):2734-2740.
    PMID: 28926237 DOI: 10.1021/acs.jnatprod.7b00500
    Tengerensine (1), isolated as a racemate and constituted from a pair of bis-benzopyrroloisoquinoline enantiomers, and tengechlorenine (2), purified as a scalemic mixture and constituted from a pair of chlorinated phenanthroindolizidine enantiomers, were isolated from the leaves of Ficus fistulosa var. tengerensis, along with three other known alkaloids. The structures of 1 and 2 were determined by spectroscopic data interpretation and X-ray diffraction analysis. The enantiomers of 1 were separated by chiral-phase HPLC, and the absolute configurations of (+)-1 and (-)-1 were established via experimental and calculated ECD data. Compound 1 is notable in being a rare unsymmetrical cyclobutane adduct and is the first example of a dimeric benzopyrroloisoquinoline alkaloid, while compound 2 represents the first naturally occurring halogenated phenanthroindolizidine alkaloid. Compound (+)-1 displayed a selective in vitro cytotoxic effect against MDA-MB-468 cells (IC50 7.4 μM), while compound 2 showed pronounced in vitro cytotoxic activity against all three breast cancer cell lines tested (MDA-MB-468, MDA-MB-231, and MCF7; IC50 values of 0.038-0.91 μM).
    Matched MeSH terms: Alkaloids/isolation & purification*; Alkaloids/pharmacology*; Alkaloids/chemistry
  19. Kong WM, Mohamed Z, Alshawsh MA, Chik Z
    J Pharm Biomed Anal, 2017 Sep 05;143:43-47.
    PMID: 28551311 DOI: 10.1016/j.jpba.2017.05.020
    A microdialysis system coupled with a sensitive ultra-fast liquid chromatography-mass spectrometry (UFLC-MS) method was developed for the pharmacokinetic analysis of mitragynine in rat blood and striatum. Mitragynine is an active alkaloid of Mitragyna speciosa and has been proposed to be used for opioid withdrawal therapy. In this study, chromatographic separation was performed in a gradient elution mode with 0.1% formic acid and acetonitrile on a Zorbax Eclipse C18 column. The mass spectrometric (MS) analysis was carried out in a positive electrospray mode and mitragynine ion (m/z 399.2) was monitored in extracted ion chromatography. A good linearity range was obtained from 10-1000ng/mL with acceptable accuracy and precision parameters. The microdialysate was collected simultaneously from the striatum and the right jugular vein using microdialysis probes. After a single intravenous administration of 10mg/kg mitragynine, mitragynine showed a two-compartmental drug elimination pattern with half-life (T1/2) of approximately 13h. The percent of AUCbrain/AUCplasma of mitragynine was calculated and shown to be 65.8±4.5%. The results indicated that mitragynine could be a suitable molecule to develop into an opioid replacement drug based on its ideal pharmacokinetic properties, namely, small molecular size, lipophilic in nature and with excellent blood-brain barrier (BBB) permeability.
    Matched MeSH terms: Secologanin Tryptamine Alkaloids
  20. Altaf R, Asmawi MZ, Dewa A, Sadikun A, Umar MI
    Pharmacogn Rev, 2013 Jan;7(13):73-80.
    PMID: 23922460 DOI: 10.4103/0973-7847.112853
    Phaleria macrocarpa, commonly known as Mahkota dewa is a medicinal plant that is indigenous to Indonesia and Malaysia. Extracts of P. macrocarpa have been used since years in traditional medicine that are evaluated scientifically as well. The extracts are reported for a number of valuable medicinal properties such as anti-cancer, anti-diabetic, anti-hyperlipidemic, anti-inflammatory, anti-bacterial, anti-fungal, anti-oxidant and vasorelaxant effect. The constituents isolated from different parts of P. macrocarpa include Phalerin, gallic acid, Icaricide C, magniferin, mahkoside A, dodecanoic acid, palmitic acid, des-acetylflavicordin-A, flavicordin-A, flavicordin-D, flavicordin-A glucoside, ethyl stearate, lignans, alkaloids andsaponins. The present review is an up-to-date summary of occurrence, botanical description, ethnopharmacology, bioactivity and toxicological studies related to P. macrocarpa.
    Matched MeSH terms: Alkaloids
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links