Displaying publications 221 - 240 of 1005 in total

Abstract:
Sort:
  1. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(11):569-73.
    PMID: 20972356
    Fatty thiohydroxamic acids (FTAs) have been successfully synthesized from palm olein and thiohydroxamic acid by a one-step lipase catalyzed reaction. The use of immobilized lipase (Lipozyme RMIM) as the catalyst for the preparation reaction provides an easy isolation of the enzyme from the products and other components in the reaction mixture. The FTAs were characterized using Fourier transform infrared (FTIR) spectroscopy, proton nuclear magnetic resonance ((1)H NMR) technique and elemental analysis. The highest conversion percentage (95 %) was obtained when the process was carried out for 30 hours using urea to palm oil ratio of 6.0: 1.0 at 40 °C. The method employed offers several advantages such as renewable and abundant of the raw material, simple reaction procedure, environmentally friendly process and high yield of the product.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  2. Kuan YH, Bhat R, Karim AA
    J Agric Food Chem, 2011 Apr 27;59(8):4111-8.
    PMID: 21401213 DOI: 10.1021/jf104050k
    The physicochemical and functional properties of ultraviolet (UV)-treated egg white protein (EW) and sodium caseinate (SC) were investigated. UV irradiation of the proteins was carried out for 30, 60, 90, and 120 min. However, the SC samples were subjected to extended UV irradiation for 4 and 6 h as no difference was found on the initial UV exposure time. Formol titration, SDS-PAGE, and FTIR analyses indicated that UV irradiation could induce cross-linking on proteins and led to improved emulsifying and foaming properties (P < 0.05). These results indicated that the UV-irradiated EW and SC could be used as novel emulsifier and foaming agents in broad food systems for stabilizing and foaming purposes.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  3. Al-Mulla EA, Yunus WM, Ibrahim NA, Rahman MZ
    J Oleo Sci, 2010;59(3):157-60.
    PMID: 20124758
    In this study, difatty acyl urea has been successfully synthesized from corn oil using sodium ethoxide as a catalyst. Ethyl fatty ester and glycerol were produced as by-products. In this reaction, corn oil was refluxed with urea in ethanol. The highest conversion percentage (78%) was obtained when the process was carried out for 8 hours using urea to corn oil ratio of 5.6: 1.0 at 78 degrees C. Both difatty acyl urea and ethyl fatty ester have been characterized using elemental analysis, Fourier transform infrared (FTIR) spectroscopy and (1)H nuclear magnetic resonance (NMR) technique.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  4. Rohman A, Man YC, Sismindari
    Pak J Pharm Sci, 2009 Oct;22(4):415-20.
    PMID: 19783522
    Today, virgin coconut oil (VCO) is becoming valuable oil and is receiving an attractive topic for researchers because of its several biological activities. In cosmetics industry, VCO is excellent material which functions as a skin moisturizer and softener. Therefore, it is important to develop a quantitative analytical method offering a fast and reliable technique. Fourier transform infrared (FTIR) spectroscopy with sample handling technique of attenuated total reflectance (ATR) can be successfully used to analyze VCO quantitatively in cream cosmetic preparations. A multivariate analysis using calibration of partial least square (PLS) model revealed the good relationship between actual value and FTIR-predicted value of VCO with coefficient of determination (R2) of 0.998.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  5. Mohamad S, Yunus WM, Haron MJ, Rahman MZ
    J Oleo Sci, 2008;57(5):263-7.
    PMID: 18391474
    Fatty hydrazides (FH) have been successfully synthesized from palm oils by a one-step lipase catalyzed reaction. The synthesis was carried out by treating the oils with hydrazine hydrate at neutral pH using an immobilized lipase, Lipozyme as the catalyst. The percentages of conversion of RBD (refined, bleached and deodorized) palm oil (PO), RBD palm olein (POn), RBD palm stearin (PS) and RBD palm kernel olein (PKOn) into their fatty hydrazides are 95, 97, 97 and 99, respectively.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  6. Yahaya YA, Mat Don M, Bhatia S
    J Hazard Mater, 2009 Jan 15;161(1):189-95.
    PMID: 18513859 DOI: 10.1016/j.jhazmat.2008.03.104
    The ability of white-rot fungus, Pycnoporus sanguineus to adsorb copper (II) ions from aqueous solution is investigated in a batch system. The live fungus cells were immobilized into Ca-alginate gel to study the influence of pH, initial metal ions concentration, biomass loading and temperature on the biosorption capacity. The optimum uptake of Cu (II) ions was observed at pH 5 with a value of 2.76mg/g. Biosorption equilibrium data were best described by Langmuir isotherm model followed by Redlich-Peterson and Freundlich models, respectively. The biosorption kinetics followed the pseudo-second order and intraparticle diffusion equations. The thermodynamic parameters enthalpy change (10.16kJ/mol) and entropy change (33.78J/molK) were determined from the biosorption equilibrium data. The FTIR analysis showed that OH, NH, CH, CO, COOH and CN groups were involved in the biosorption of Cu (II) ions onto immobilized cells of P. sanguineus. The immobilized cells of P. sanguineus were capable of removing Cu (II) ions from aqueous solution.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  7. Hameed BH, El-Khaiary MI
    J Hazard Mater, 2008 Jul 15;155(3):601-9.
    PMID: 18178306 DOI: 10.1016/j.jhazmat.2007.11.102
    In this work, pumpkin seed hull (PSH), an agricultural solid waste, is proposed as a novel material for the removal of methylene blue (MB) from aqueous solutions. The effects of the initial concentration, agitation time and solution pH were studied in batch experiments at 30 degrees C. The equilibrium process was described well by the multilayer adsorption isotherm. The adsorption kinetics can be predicted by the pseudo-first-order and the modified pseudo-first-order models. The mechanism of adsorption was also studied. It was found that for a short time period the rate of adsorption is controlled by film diffusion. However, at longer adsorption times, pore-diffusion controls the rate of adsorption. Pore diffusion takes place in two distinct regimes, corresponding to diffusion in macro- and mesopores. The results demonstrate that the PSH is very effective in the removal of MB from aqueous solutions.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  8. Alahmadi SM, Mohamad S, Maah MJ
    Int J Mol Sci, 2012;13(10):13726-36.
    PMID: 23202977 DOI: 10.3390/ijms131013726
    This work reports a new method to covalently attach calix[4]arene derivatives onto MCM-41, using a diisocyanate as a linker. The modified mesoporous silicates were characterized by fourier transform infrared spectroscopy (FTIR), thermal analysis (TGA) and elemental analysis. The FTIR spectra and TGA analysis verified that the calix[4]arene derivates are covalently attached to the mesoporous silica. The preservation of the MCM-41 channel system was checked by X-ray diffraction and nitrogen adsorption analysis.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  9. Erfani M, Saion E, Soltani N, Hashim M, Abdullah WS, Navasery M
    Int J Mol Sci, 2012;13(11):14434-45.
    PMID: 23203073 DOI: 10.3390/ijms131114434
    Calcium borate nanoparticles have been synthesized by a thermal treatment method via facile co-precipitation. Differences of annealing temperature and annealing time and their effects on crystal structure, particle size, size distribution and thermal stability of nanoparticles were investigated. The formation of calcium borate compound was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Thermogravimetry (TGA). The XRD patterns revealed that the co-precipitated samples annealed at 700 °C for 3 h annealing time formed an amorphous structure and the transformation into a crystalline structure only occurred after 5 h annealing time. It was found that the samples annealed at 900 °C are mostly metaborate (CaB(2)O(4)) nanoparticles and tetraborate (CaB(4)O(7)) nanoparticles only observed at 970 °C, which was confirmed by FTIR. The TEM images indicated that with increasing the annealing time and temperature, the average particle size increases. TGA analysis confirmed the thermal stability of the annealed samples at higher temperatures.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  10. Ikhsan NI, Rameshkumar P, Pandikumar A, Mehmood Shahid M, Huang NM, Vijay Kumar S, et al.
    Talanta, 2015 Nov 1;144:908-14.
    PMID: 26452907 DOI: 10.1016/j.talanta.2015.07.050
    In this report, silver nanoparticles (Ag NPs) were successfully deposited on graphene oxide (GO) sheets to form GO-Ag nanocomposite using garlic extract and sunlight and the nanocomposite modified glassy carbon (GC) electrode was applied as an electrochemical sensor for the detection of nitrite ions. The formation of GO-Ag nanocomposite was confirmed by using UV-visible absorption spectroscopy, TEM, XRD and FTIR spectroscopy analyses. Further, TEM pictures showed a uniform distribution Ag on GO sheets with an average size of 19 nm. The nanocomposite modified electrode produced synergistic catalytic current in nitrite oxidation with a negative shift in overpotential. The limit of detection (LOD) values were found as 2.1 µM and 37 nM, respectively using linear sweep voltammetry (LSV) and amperometric i-t curve techniques. The proposed sensor was stable, reproducible, sensitive and selective toward the detection nitrite and could be applied for the detection of nitrite in real water sample.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  11. Abdul PM, Jahim JM, Harun S, Markom M, Lutpi NA, Hassan O, et al.
    Bioresour Technol, 2016 Jul;211:200-8.
    PMID: 27017130 DOI: 10.1016/j.biortech.2016.02.135
    Oil palm empty fruit bunch (OPEFB) fibre is widely available in Southeast Asian countries and found to have 60% (w/w) sugar components. OPEFB was pretreated using the ammonia fibre expansion (AFEX) method and characterised physically by the Fourier transform infrared spectroscopy, X-ray diffraction and scanning electron microscopy. The results show that there were significant structural changes in OPEFB after the pretreatment step, and the sugar yield after enzymatic hydrolysis using a cocktail of Cellic Ctec2® and Cellic Htec2® increased from 0.15gg(-1) of OPEFB in the raw untreated OPEFB sample to 0.53gg(-1) of OPEFB in AFEX-pretreated OPEFB (i.e. almost a fourfold increase in sugar conversion), which enhances the economic value of OPEFB. A biohydrogen fermentability test of this hydrolysate was carried out using a locally isolated bacterium, Enterobacter sp. KBH6958. The biohydrogen yield after 72h of fermentation was 1.68mol H2 per mol sugar. Butyrate, ethanol, and acetate were the major metabolites.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  12. Meor Mohd Affandi MM, Tripathy M, Shah SA, Majeed AB
    Drug Des Devel Ther, 2016;10:959-69.
    PMID: 27041998 DOI: 10.2147/DDDT.S94701
    We examined the solubility of simvastatin in water in 0.01 mol·dm(-3), 0.02 mol·dm(-3), 0.04 mol·dm(-3), 0.09 mol·dm(-3), 0.18 mol·dm(-3), 0.36 mol·dm(-3), and 0.73 mol·dm(-3) arginine (ARG) solutions. The investigated drug is termed the solute, whereas ARG the cosolute. Phase solubility studies illustrated a higher extent of solubility enhancement for simvastatin. The aforementioned system was subjected to conductometric and volumetric measurements at temperatures (T) of 298.15 K, 303.15 K, 308.15 K, and 313.15 K to illustrate the thermodynamics involved and related solute-solvent interactions. The conductance values were used to evaluate the limiting molar conductance and association constants. Thermodynamic parameters (ΔG (0), ΔH (0), ΔS (0), and E s) for the association process of the solute in the aqueous solutions of ARG were calculated. Limiting partial molar volumes and expansibilities were evaluated from the density values. These values are discussed in terms of the solute-solvent and solute-cosolute interactions. Further, these systems were analyzed using ultraviolet-visible analysis, Fourier-transform infrared spectroscopy, and (13)C, (1)H, and two-dimensional nuclear overhauser effect spectroscopy nuclear magnetic resonance to complement thermophysical explanation.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  13. Abdullah BM, Zubairi SI, Huri HZ, Hairunisa N, Yousif E, Basu RC
    PLoS One, 2016;11(3):e0151603.
    PMID: 27008312 DOI: 10.1371/journal.pone.0151603
    Presently, plant oils which contain high percentage of linoleic acid 1 are perceived to be a viable alternative to mineral oil for biolubricant applications due to their biodegradability and technical properties. In order to get biodegradable lubricant, triester derivatives compounds (1-5) were synthesized and characterized. The processes involved were monoepoxidation of linoleic acid 2, oxirane ring opening 3, esterification 4 and acylation 5. The structures of the products were confirmed by FTIR, 1H and 13C-NMR and LC-MS. The results that showed lowest temperature properties were obtained for triester 5, with a pour point value (PP) of -73°C, highest onset temperature (260°C) and lowest volatility at 0.30%. Viscosity index (VI) increased for the ester's synthetic compounds (2, 3, 4, 5), while the PP decreased. This behavior is the result of the increase of the chain length of the branching agents. Triester based linoleic acid has improved properties such as low-temperature and tribological properties. These results will make it feasible for plant oil to be used for biolubricants, fuels in chain saws, transmission oil and brake fluid.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  14. Ghiyasiyan-Arani M, Masjedi-Arani M, Ghanbari D, Bagheri S, Salavati-Niasari M
    Sci Rep, 2016 05 04;6:25231.
    PMID: 27143312 DOI: 10.1038/srep25231
    In this work, copper pyrovanadate (Cu3V2O7(OH)2(H2O)2) nanoparticles have been synthesized by a simple and rapid chemical precipitation method. Different copper-organic complexes were used to control the size and morphology of products. The morphology and structure of the as-synthesized products were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectrum, electron dispersive X-ray spectroscopy (EDX), thermal gravimetric analysis (TGA), differential thermal analysis (DTA) and photoluminescence (PL) spectroscopy. The influence of copper pyrovanadate nanostructures on the flame retardancy of the polystyrene, poly vinyl alcohol and cellulose acetate was studied. Dispersed nanoparticles play the role of a magnetic barrier layer, which slows down product volatilization and prevents the flame and oxygen from the sample during decomposition of the polymer. Cu3V2O7(OH)2(H2O)2 is converted to Cu3V2O8 with an endothermic reaction which simultaneously releases water and decrease the temperature of the flame region.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  15. Gholamrezaei S, Salavati-Niasari M, Ghanbari D, Bagheri S
    Sci Rep, 2016;6:20060.
    PMID: 26805744 DOI: 10.1038/srep20060
    Different morphologies of Ag2Te nanostructures were synthesized using TeCl4 as a new precursor and hydrazine hydrate as reducing agent by a hydrothermal method. Various parameters that affect on morphology and purity of nanostructures were optimized. According to our experiments the best time and temperature for preparation of this nanostructure are 12 h and 120 °C. The photo-catalytic behaviour of nanostructures in presence of UV-visible light for degradation of methyl orange was investigated. Results show that the presence of UV light is necessary for an efficient degradation of dye in aqueous solution. On the other hand, as observations propose the Ag2Te reveal a strong photoluminescence peak at room temperature that could be attributed to high level transition in the semiconductor. Nanostructures were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR) techniques and UV-visible scanning spectrometer (UV-Vis).
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  16. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  17. Tan KH, Cham HY, Awala H, Ling TC, Mukti RR, Wong KL, et al.
    Nanoscale Res Lett, 2015 Dec;10(1):956.
    PMID: 26058517 DOI: 10.1186/s11671-015-0956-6
    Lubricant oils take significant part in current health and environmental considerations since they are an integral and indispensable component of modern technology. Antioxidants are probably the most important additives used in oils because oxidative deterioration plays a major role in oil degradation. Zeolite nanoparticles (NPs) have been proven as another option as green antioxidants in oil formulation. The anti-oxidative behavior of zeolite NPs is obvious; however, the phenomenon is still under investigation. Herein, a study of the effect of extra-framework cations stabilized on Linde Type L (LTL) zeolite NPs (ca. 20 nm) on inhibition of oxidation in palm oil-based lubricant oil is reported. Hydrophilic LTL zeolites with a Si/Al ratio of 3.2 containing four different inorganic cations (Li(+), Na(+), K(+), Ca(2+)) were applied. The oxidation of the lubricant oil was followed by visual observation, colorimetry, fourier transform infrared (FTIR) spectroscopy, (1)H NMR spectroscopy, total acid number (TAN), and rheology analyses. The effect of extra-framework cations to slow down the rate of oil oxidation and to control the viscosity of oil is demonstrated. The degradation rate of the lubricant oil samples is decreased considerably as the polarizability of cation is increased with the presence of zeolite NPs. More importantly, the microporous zeolite NPs have a great influence in halting the steps that lead to the polymerization of the oils and thus increasing the lifetime of oils.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  18. Aissaoui T, AlNashef IM, Hayyan M, Hashim MA
    PMID: 25985123 DOI: 10.1016/j.saa.2015.05.001
    Deep eutectic solvents (DESs) are novel solvent media that are currently under investigation as an alternative to ionic liquids and conventional solvents. The physical properties of DESs as well as their mild environmental footprint and potentially critical industrial application necessitate understanding the interaction of functional groups on both the salt and hydrogen bond donor (HBD). In this study, four DESs were prepared by mixing triethylenglycol, diethylenglycol, ethylenglycol, and glycerol as HBDs with methyltriphenylphosphonium bromide as a salt at a molar ratio of 1:4. Fourier transform infrared spectroscopy was conducted to highlight the chemical structure and mechanism of the combination of the four DESs. New spectra illustrating the combination of the functional groups of the HBDs and salt were observed and interpreted. This study is the first to investigate the properties of neoteric phosphonium-based DESs.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  19. Murugan K, Sanoopa CP, Madhiyazhagan P, Dinesh D, Subramaniam J, Panneerselvam C, et al.
    Nat Prod Res, 2016 Apr;30(7):826-33.
    PMID: 26284510 DOI: 10.1080/14786419.2015.1074230
    Aedes aegypti is a primary vector of dengue, a mosquito-borne viral disease infecting 50-100 million people every year. Here, we biosynthesised mosquitocidal silver nanoparticles (AgNP) using the aqueous leaf extract of Crotalaria verrucosa. The green synthesis of AgNP was studied by UV-vis spectroscopy, SEM, EDX and FTIR. C. verrucosa-synthesised AgNPs were toxic against A. aegypti larvae and pupae. LC50 of AgNP ranged from 3.496 ppm (I instar larvae) to 17.700 ppm (pupae). Furthermore, we evaluated the predatory efficiency of dragonfly nymphs, Brachydiplax sobrina, against II and III instar larvae of A. aegypti in an aquatic environment contaminated with ultra-low doses of AgNP. Under standard laboratory conditions, predation after 24 h was 87.5% (II) and 54.7% (III). In an AgNP-contaminated environment, predation was 91 and 75.5%, respectively. Overall, C. verrucosa-synthesised AgNP could be employed at ultra-low doses to reduce larval population of dengue vectors enhancing predation rates of dragonfly nymphs.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
  20. Meka VS, Thing LK, Gorajana A, Kolapalli VR
    Pak J Pharm Sci, 2015 Jul;28(4):1373-87.
    PMID: 26142528
    The present work investigates the formulation and biopharmaceutical estimation of gastric floating drug delivery system (GFDDS) of propranolol HCl using semi-synthetic polymer carboxymethyl ethyl cellulose (CMEC) and a synthetic polymer polyethylene oxide (PEO). A central composite design was applied for optimization of polymer quantity (CMEC or PEO) and sodium bicarbonate concentration as independent variables. The dependent variables evaluated were: % of drug release at 1 hr (D1hr), % drug release at 3 hr (D3hr) and time taken for 95% of drug release (t95). Numerical optimization and graphical optimization were conducted to optimize the response variables. All observed responses of statistically optimized formulations were in high treaty with predicted values. Accelerated stability studies were conducted on the optimized formulations at 40 ± 2°C/75% ± 5% RH and confirm that formulations were stable. Optimized formulations were evaluated for in vivo buoyancy characterization in human volunteers and were found buoyant in gastric fluid. Gastric residence time was enhanced in the fed but not the fasted state. The optimized formulations and marketed formulation were administered to healthy human volunteers and evaluated for pharmacokinetic parameters. Mean residence time (MRT) was prolonged and AUC levels were increased for both optimized floating tablets when compared with marketed product. High relative bioavailability obtained with optimized gastric floating tablets compared to commercial formulation, indicated the improvement of bioavailability.
    Matched MeSH terms: Spectroscopy, Fourier Transform Infrared
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links