Displaying publications 221 - 240 of 329 in total

Abstract:
Sort:
  1. Ilenghoven D, Hisham A, Ibrahim S, Mohd Yussof SJ
    Burns, 2020 08;46(5):1236-1239.
    PMID: 32471558 DOI: 10.1016/j.burns.2020.05.008
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  2. Nurul-Syakima AM, Yoke-Kqueen C, Sabariah AR, Shiran MS, Singh A, Learn-Han L
    Int J Mol Med, 2011 Sep;28(3):327-36.
    PMID: 21637912 DOI: 10.3892/ijmm.2011.714
    MicroRNAs (miRNAs) are small noncoding RNAs that involved in various cancer-related cellular processes. Diverse studies on expression profiling of miRNAs have been performed and the data showed that some miRNAs are up-regulated or down-regulated in cancer. Until now, there are no data published on the miRNA expression in head and neck cancers from Malaysia. Hence, this study aimed to investigate potentially crucial miRNAs in head and neck cancer patients from Malaysian populations. A global miRNA profiling was performed on 12 samples of head and neck cancer tissue using microarray analysis followed by validation using real-time RT-PCR. Microarray analysis identified 10 miRNAs that could distinguish malignant head and neck cancer lesions from normal tissues; 7 miRNAs (hsa-miR-181a-2*, hsa-miR-29b-1*, hsa-miR-181a, hsa-miR-181b, hsa-miR-744, hsa-miR-1271 and hsa-miR-221*) were up-regulated while 3 miRNAs (hsa-miR-141, hsa-miR-95 and hsa-miR-101) were down-regulated. These miRNAs may contribute in a simple profiling strategy to identify individuals at higher risk of developing head and neck cancers, thus helping in the elucidation of the molecular mechanisms involved in head and neck cancer pathogenesis.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  3. Tai L, Huang CJ, Choo KB, Cheong SK, Kamarul T
    Int J Med Sci, 2020;17(4):457-470.
    PMID: 32174776 DOI: 10.7150/ijms.38832
    Oxidative stress has been linked to senescence and tumorigenesis via modulation of the cell cycle. Using a hydrogen peroxide (H2O2)-induced oxidative stress-induced premature senescence (OSIPS) model previously reported by our group, this study aimed to investigate the effects of oxidative stress on microRNA (miRNA) expression in relation to the G1-to-S-phase (G1/S) transition of the cell cycle and cell proliferation. On global miRNA analysis of the OSIPS cells, twelve significantly up- or down-regulated miRNAs were identified, the target genes of which are frequently associated with cancers. Four down-regulated miR-17 family miRNAs are predicted to target key pro- and anti-proliferative proteins of the p21/cyclin D-dependent kinase (CDK)/E2F1 pathway to modulate G1/S transition. Two miR-17 miRNAs, miR-20-5p and miR-106-5p, were confirmed to be rapidly and stably down-regulated under oxidative stress. While H2O2 treatment hampered G1/S transition and suppressed DNA synthesis, miR-20b-5p/miR-106a-5p over-expression rescued cells from growth arrest in promoting G1/S transition and DNA synthesis. Direct miR-20b-5p/miR-106a-5p regulation of p21, CCND1 and E2F1 was demonstrated by an inverse expression relationship in miRNA mimic-transfected cells. However, under oxidative stress, E2F1 expression was down-regulated, consistent with hampered G1/S transition and suppressed DNA synthesis and cell proliferation. To explain the observed E2F1 down-regulation under oxidative stress, a scheme is proposed which includes miR-20b-5p/miR-106a-5p-dependent regulation, miRNA-E2F1 autoregulatory feedback and E2F1 response to repair oxidative stress-induced DNA damages. The oxidative stress-modulated expression of miR-17 miRNAs and E2F1 may be used to develop strategies to retard or reverse MSC senescence in culture, or senescence in general.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  4. Shimizu H, Utama A, Yoshii K, Yoshida H, Yoneyama T, Sinniah M, et al.
    Jpn J Infect Dis, 1999 Feb;52(1):12-5.
    PMID: 10808253
    Enterovirus 71 (EV71), one of the major causative agents for hand, foot and mouth disease (HFMD), is sometimes associated with severe central nervous system diseases. In 1997, in Malaysia and Japan, and in 1998 in Taiwan, there were HFMD epidemics involving sudden deaths among young children, and EV71 was isolated from the HFMD patients, including the fatal cases. The nucleotide sequences of each EV71 isolate were determined and compared by phylogenetical analysis. EV71 strains from previously reported epidemics belonged to genotype A-1, while those from recent epidemics could be divided into two genotypes, A-2 and B. In Malaysia, genotype A-2 was more prevalent, while in Japan and Taiwan, B genotype was more prevalent. Two isolates from fatal cases in Malaysia and one isolate from a fatal case in Japan were genotype A-2. However, all isolates from three fatal cases in Taiwan belonged to genotype B. The severity of the HFMD did not link directly to certain genotypes of EV71.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  5. Sim MS, Mohamed Z, Hatim A, Rajagopal VL, Habil MH
    Brain Res, 2010 Oct 21;1357:91-6.
    PMID: 20736000 DOI: 10.1016/j.brainres.2010.08.053
    Methamphetamine is a highly addictive psychostimulant that has surged in popularity worldwide in the last decade. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophic factor family, is widely expressed in the adult mammalian brain and plays an important role in the long-term survival, differentiation, and outgrowth of neurons. Previous studies suggested that the BDNF gene may be involved in the mechanisms underlying substance dependence. This study investigated the association of the BDNF gene Val66Met polymorphism with methamphetamine dependence and with psychosis in a Malaysian population with different ethnicities. The BDNF Val66Met polymorphism was genotyped by PCR-RFLP in 186 male methamphetamine-dependent subjects and in 154 male controls of four different ethnicities, namely, Malay, Chinese, Kadazan-Dusun, and Bajau. Our results showed that the distribution of the BDNF Val66Met genotype in Chinese subjects with methamphetamine dependence (OR=2.6, p=0.015) and methamphetamine psychosis (OR=0.2, p = 0.034) were significant compared with controls. The frequency of the 66Val allele in methamphetamine-dependent subjects was higher than that in the control group, suggesting that the 66Val carriers are more susceptible to methamphetamine dependence. However, 66Val allele frequency in other ethnicities was not significantly different from the controls. The results of the study also showed that in the Chinese methamphetamine-dependent subjects, there was a difference in allele frequency when comparing those who developed psychosis and those who did not. Our findings suggest that the BDNF Val66Met polymorphism may contribute to methamphetamine dependence and psychosis in the Chinese population but not in other Malaysian ethnicities.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  6. Sarmadi VH, Ahmadloo S, Boroojerdi MH, John CM, Al-Graitte SJR, Lawal H, et al.
    Cell Transplant, 2020 2 7;29:963689719885077.
    PMID: 32024378 DOI: 10.1177/0963689719885077
    Treatment of leukemia has become much difficult because of resistance to the existing anticancer therapies. This has thus expedited the search for alternativ therapies, and one of these is the exploitation of mesenchymal stem cells (MSCs) towards control of tumor cells. The present study investigated the effect of human umbilical cord-derived MSCs (UC-MSCs) on the proliferation of leukemic cells and gauged the transcriptomic modulation and the signaling pathways potentially affected by UC-MSCs. The inhibition of growth of leukemic tumor cell lines was assessed by proliferation assays, apoptosis and cell cycle analysis. BV173 and HL-60 cells were further analyzed using microarray gene expression profiling. The microarray results were validated by RT-qPCR and western blot assay for the corresponding expression of genes and proteins. The UC-MSCs attenuated leukemic cell viability and proliferation in a dose-dependent manner without inducing apoptosis. Cell cycle analysis revealed that the growth of tumor cells was arrested at the G0/G1 phase. The microarray results identified that HL-60 and BV173 share 35 differentially expressed genes (DEGs) (same expression direction) in the presence of UC-MSCs. In silico analysis of these selected DEGs indicated a significant influence in the cell cycle and cell cycle-related biological processes and signaling pathways. Among these, the expression of DBF4, MDM2, CCNE2, CDK6, CDKN1A, and CDKN2A was implicated in six different signaling pathways that play a pivotal role in the anti-tumorigenic activity exerted by UC-MSCs. The UC-MSCs perturbate the cell cycle process of leukemic cells via dysregulation of tumor suppressor and oncogene expression.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  7. Pau Ni IB, Zakaria Z, Muhammad R, Abdullah N, Ibrahim N, Aina Emran N, et al.
    Pathol Res Pract, 2010 Apr 15;206(4):223-8.
    PMID: 20097481 DOI: 10.1016/j.prp.2009.11.006
    Genomic and transcriptomic alterations that affect cellular processes, such as cell proliferation, differentiation, apoptosis and invasion, commonly occur in breast oncogenesis. Epidemiological evidence has proven that the risk of breast cancer predisposition varies among different ethnicities. This study aims to identify the transcriptome changes that commonly occur during the transition of normal breast epithelium to carcinoma in three local ethnic groups (Malays, Chinese and Indians). The gene expression patterns of 43 breast carcinomas with 43 patient-matched normal breast tissues were investigated using Affymetrix U133A GeneChip (containing 22,283 probe sets targeting approximately 18,400 different transcripts) and analyzed with GeneSpring GX10. Our findings revealed a total of 33 significantly differentially expressed genes, which showed>2-fold change at a 99.9% confidence interval level (p<0.001). The significantly differentially expressed genes included CD24, CD36, CD9, TACSTD1, TACSTD2, HBB, LEP, LPL, AKR1C1, AKR1C2 and AKR1C3. Our results indicate that the vast majority of gene expression changes, from normal breast epithelial to carcinoma, found in our three major ethnic populations are similar to those in the Caucasian population. Further study of the differentially expressed genes identified in our present study is needed to search for potential breast tumor biomarkers. This will eventually help to improve the therapeutic and treatment strategies for breast cancer patients in the future.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  8. Hasoon MF, Daud HM, Abdullah AA, Arshad SS, Bejo HM
    In Vitro Cell Dev Biol Anim, 2011 Jan;47(1):16-25.
    PMID: 21082288 DOI: 10.1007/s11626-010-9348-5
    A new cell line, Asian sea bass brain (ASBB), was derived from the brain tissue of Asian sea bass Lates calcarifer. This cell line was maintained in Leibovitz L-15 media supplemented with 10% fetal bovine serum (FBS). The ASBB cell line was subcultured more than 60 times over a period of 15 mo. The ASBB cell line consists predominantly of fibroblastic-like cells and was able to grow at temperatures between 20°C and 30°C with an optimum temperature of 25°C. The growth rate of these cells increased as the proportion of FBS increased from 2% to 20% at 25°C with optimum growth at the concentrations of 10% or 15% FBS. Polymerase chain reaction products were obtained from ASBB cells and tissues of sea bass with primer sets of microsatellite markers of sea bass. An isolate of piscine nodavirus from juveniles of marine fish species tested positive by IQ2000 kit for viral nervous necrosis detection and was examined for its infectivity to a fish cell line of ASBB. A marine fish betanodavirus was tested to determine the susceptibility of this new cell line in comparison with commercial highly permissive SSN-1 cells. The ASBB cell line was found to be susceptible to nodavirus (RGNNV genotype), and the infection was confirmed by comparison cytopathic effect (CPE) with commercial SSN-1 and reverse transcriptase-polymerase chain reaction. A nodavirus was further elucidated by electron microscopy, and the virus tested was shown to induce CPE on ASBB cells with significant high titer. This suggests that the ASBB cell line has good potential for the isolation of fish viruses.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  9. Tan EL, Sam CK
    Exp Oncol, 2007 Sep;29(3):166-74.
    PMID: 18004239
    Epstein-Barr virus (EBV), a human gammaherpesvirus is intimately associated with nasopharyngeal carcinoma (NPC), with the incidence of the virus detected in malignant tissues being close to 100% in NPC endemic areas. The viral latent gene, latent membrane protein 1 (LMP1), has all the typical characteristics of an oncogene and extensive studies have shown beyond doubt its abilities in cellular transformation giving rise to malignant phenotypes. The present study compares the gene sequence and biological properties of LMP1 gene derived from two patients with different stages of NPC--one presented with dysplastic, pre-malignant lesion and the other with malignant lesion.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  10. Caillaud A, de la Iglesia P, Campàs M, Elandaloussi L, Fernández M, Mohammad-Noor N, et al.
    Toxicon, 2010 Feb-Mar;55(2-3):633-7.
    PMID: 19631680 DOI: 10.1016/j.toxicon.2009.07.016
    Protein phosphatase inhibition assay (PPIA), Neuroblastoma cell-based assay (Neuro-2a CBA) and LC-MS/MS analysis revealed for the first time the production of okadaic acid (OA) by a Prorocentrum rhathymum strain. Low amounts of OA were detected by LC-MS/MS analysis. Inhibition of PP2A activity and a weak toxicity to the Neuro-2a CBA were also observed.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  11. Ma XR, Edmund Sim UH, Pauline B, Patricia L, Rahman J
    Trop Biomed, 2008 Apr;25(1):46-57.
    PMID: 18600204 MyJurnal
    Colorectal carcinoma (CRC) arises as a result of mutational activation of oncogenes coupled with inactivation of tumour suppressor genes. Mutations in APC, K-ras and p53 have been commonly reported. In a previous study by our group, the tumour susceptibility gene 101 (TSG101) were found to be persistently upregulated in CRC cases. TSG101 was reported to be closely related to cancers of the breast, brain and colon, and its overexpression in human papillary thyroid carcinomas and ovarian carcinomas had previously been reported. The wingless-type MMTV integration site family member 2 (WNT2) is potentially important in the Wnt/beta-catenin pathway and upregulation of WNT2 is not uncommon in human cancers. In this study, we report the investigation for mutation(s) and expression pattern(s) of WNT2 and TSG101, in an effort to further understand their role(s) in CRC tumourigenesis. Our results revealed no mutation in these genes, despite their persistent upregulation in CRC cases studied.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  12. Ooi CP, Rohani A, Zamree I, Lee HL
    Trop Biomed, 2005 Jun;22(1):73-6.
    PMID: 16880757
    The rapid detection of dengue infection in mosquito vectors is important for early warning to forestall an outbreak. Reverse Transcriptase-Polymerase Chain Reaction (RT-PCR) provides a rapid method for dengue detection in man and mosquitoes. An RT-PCR kit developed by the Medical Entomology Unit, Institute for Medical Research to detect dengue infection in mosquitoes, was tested for its shelf life at 3 storage temperatures: room temperature, refrigerator and freezer. Test kits were tested once every 3 days for kits stored at room temperature, and once every week for those stored at refrigerator and freezer temperatures. The results showed that the test kit could only be stored above its recommended storage temperature of -20 degrees C for not more than 3 days. DNA 100 bp markers in the kits appeared to be stable at the tested temperatures and were usable up to the 20th day when stored at 2 degrees C and below.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  13. Yeo BPH, Foong LC, Tam SM, Lee V, Hwang SS
    Biochem Mol Biol Educ, 2018 01;46(1):47-53.
    PMID: 29131478 DOI: 10.1002/bmb.21089
    Structures and functions of protein motifs are widely included in many biology-based course syllabi. However, little emphasis is placed to link this knowledge to applications in biotechnology to enhance the learning experience. Here, the conserved motifs of nucleotide binding site-leucine rich repeats (NBS-LRR) proteins, successfully used for the isolation and characterization of many plant resistance gene analogues (RGAs), is featured in the development of a series of laboratory experiments using important molecular biology techniques. A set of previously isolated RGA sequences is used as the model for performing sequence alignment and visualising 3D protein structure using current bioinformatics programs (Clustal Omega and Argusdock software). A pair of established degenerate primer sequences is provided for the prediction of targeted amino acids sequences in the RGAs. Reverse transcription-polymerase chain reaction (RT-PCR) is used to amplify RGAs from total RNA samples extracted from the tropical wild relative of black pepper, Piper colubrinum (Piperaceae). This laboratory exercise enables students to correlate specific DNA sequences with respective amino acid codes and the interaction between conserved motifs of resistance genes with putatively targeted proteins. © 2017 by The International Union of Biochemistry and Molecular Biology, 46(1):47-53, 2018.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  14. Oong XY, Ng KT, Lam TT, Pang YK, Chan KG, Hanafi NS, et al.
    PLoS One, 2015;10(8):e0136254.
    PMID: 26313754 DOI: 10.1371/journal.pone.0136254
    Epidemiological and evolutionary dynamics of influenza B Victoria and Yamagata lineages remained poorly understood in the tropical Southeast Asia region, despite causing seasonal outbreaks worldwide. From 2012-2014, nasopharyngeal swab samples collected from outpatients experiencing acute upper respiratory tract infection symptoms in Kuala Lumpur, Malaysia, were screened for influenza viruses using a multiplex RT-PCR assay. Among 2,010/3,935 (51.1%) patients infected with at least one respiratory virus, 287 (14.3%) and 183 (9.1%) samples were tested positive for influenza A and B viruses, respectively. Influenza-positive cases correlate significantly with meteorological factors-total amount of rainfall, relative humidity, number of rain days, ground temperature and particulate matter (PM10). Phylogenetic reconstruction of haemagglutinin (HA) gene from 168 influenza B viruses grouped them into Yamagata Clade 3 (65, 38.7%), Yamagata Clade 2 (48, 28.6%) and Victoria Clade 1 (55, 32.7%). With neuraminidase (NA) phylogeny, 30 intra-clade (29 within Yamagata Clade 3, 1 within Victoria Clade 1) and 1 inter-clade (Yamagata Clade 2-HA/Yamagata Clade 3-NA) reassortants were identified. Study of virus temporal dynamics revealed a lineage shift from Victoria to Yamagata (2012-2013), and a clade shift from Yamagata Clade 2 to Clade 3 (2013-2014). Yamagata Clade 3 predominating in 2014 consisted of intra-clade reassortants that were closely related to a recent WHO vaccine candidate strain (B/Phuket/3073/2013), with the reassortment event occurred approximately 2 years ago based on Bayesian molecular clock estimation. Malaysian Victoria Clade 1 viruses carried H274Y substitution in the active site of neuraminidase, which confers resistance to oseltamivir. Statistical analyses on clinical and demographic data showed Yamagata-infected patients were older and more likely to experience headache while Victoria-infected patients were more likely to experience nasal congestion and sore throat. This study describes the evolution of influenza B viruses in Malaysia and highlights the importance of continuous surveillance for better vaccination policy in this region.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  15. Nikolov LA, Endress PK, Sugumaran M, Sasirat S, Vessabutr S, Kramer EM, et al.
    Proc Natl Acad Sci U S A, 2013 Nov 12;110(46):18578-83.
    PMID: 24167265 DOI: 10.1073/pnas.1310356110
    Rafflesiaceae, which produce the world's largest flowers, have captivated the attention of biologists for nearly two centuries. Despite their fame, however, the developmental nature of the floral organs in these giants has remained a mystery. Most members of the family have a large floral chamber defined by a diaphragm. The diaphragm encloses the reproductive organs where pollination by carrion flies occurs. In lieu of a functional genetic system to investigate floral development in these highly specialized holoparasites, we used comparative studies of structure, development, and gene-expression patterns to investigate the homology of their floral organs. Our results surprisingly demonstrate that the otherwise similar floral chambers in two Rafflesiaceae subclades, Rafflesia and Sapria, are constructed very differently. In Rafflesia, the diaphragm is derived from the petal whorl. In contrast, in Sapria it is derived from elaboration of a unique ring structure located between the perianth and the stamen whorl, which, although developed to varying degrees among the genera, appears to be a synapomorphy of the Rafflesiaceae. Thus, the characteristic features that define the floral chamber in these closely related genera are not homologous. These differences refute the prevailing hypothesis that similarities between Sapria and Rafflesia are ancestral in the family. Instead, our data indicate that Rafflesia-like and Sapria-like floral chambers represent two distinct derivations of this morphology. The developmental repatterning we identified in Rafflesia, in particular, may have provided architectural reinforcement, which permitted the explosive growth in floral diameter that has arisen secondarily within this subclade.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  16. Kumarasamy V, Wahab AH, Chua SK, Hassan Z, Chem YK, Mohamad M, et al.
    J Virol Methods, 2007 Mar;140(1-2):75-9.
    PMID: 17140671
    A commercial dengue NS1 antigen-capture ELISA was evaluated to demonstrate its potential application for early laboratory diagnosis of acute dengue virus infection. Dengue virus NS1 antigen was detected in 199 of 213 acute serum samples from patients with laboratory confirmation of acute dengue virus infection but none of the 354 healthy blood donors' serum specimens. The dengue NS1 antigen-capture ELISA gave an overall sensitivity of 93.4% (199/213) and a specificity of 100% (354/354). The sensitivity was significantly higher in acute primary dengue (97.3%) than in acute secondary dengue (70.0%). The positive predictive value of the dengue NS1 antigen-capture ELISA was 100% and negative predictive value was 97.3%. Comparatively, virus isolation gave an overall positive isolation rate of 68.1% with a positive isolation rate of 73.9 and 31.0% for acute primary dengue and acute secondary dengue, respectively. Molecular detection of dengue RNA by RT-PCR gave an overall positive detection rate of 66.7% with a detection rate of 65.2 and 75.9% for acute primary dengue and acute secondary dengue, respectively. The results indicate that the commercial dengue NS1 antigen-capture ELISA may be superior to virus isolation and RT-PCR for the laboratory diagnosis of acute dengue infection based on a single serum sample.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  17. Harcourt BH, Lowe L, Tamin A, Liu X, Bankamp B, Bowden N, et al.
    Emerg Infect Dis, 2005 Oct;11(10):1594-7.
    PMID: 16318702
    Until 2004, identification of Nipah virus (NV)-like outbreaks in Bangladesh was based on serology. We describe the genetic characterization of a new strain of NV isolated during outbreaks in Bangladesh (NV-B) in 2004, which confirms that NV was the etiologic agent responsible for these outbreaks.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  18. Zandi K, Teoh BT, Sam SS, Wong PF, Mustafa MR, Abubakar S
    Virol J, 2011;8:560.
    PMID: 22201648 DOI: 10.1186/1743-422X-8-560
    Dengue is a major mosquito-borne disease currently with no effective antiviral or vaccine available. Effort to find antivirals for it has focused on bioflavonoids, a plant-derived polyphenolic compounds with many potential health benefits. In the present study, antiviral activity of four types of bioflavonoid against dengue virus type -2 (DENV-2) in Vero cell was evaluated. Anti-dengue activity of these compounds was determined at different stages of DENV-2 infection and replication cycle. DENV replication was measured by Foci Forming Unit Reduction Assay (FFURA) and quantitative RT-PCR. Selectivity Index value (SI) was determined as the ratio of cytotoxic concentration 50 (CC50) to inhibitory concentration 50 (IC50) for each compound.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  19. Abdullah N, Rafii Yusop M, Ithnin M, Saleh G, Latif MA
    C. R. Biol., 2011 Apr;334(4):290-9.
    PMID: 21513898 DOI: 10.1016/j.crvi.2011.01.004
    Studies were conducted to assess the genetic relationships between the parental palms (dura and pisifera) and performance of their progenies based on nine microsatellite markers and 29 quantitative traits. Correlation analyses between genetic distances and hybrids performance were estimated. The coefficients of correlation values of genetic distances with hybrid performance were non-significant, except for mean nut weight and leaf number. However, the correlation coefficient of genetic distances with these characters was low to be used as predicted value. These results indicated that genetic distances based on the microsatellite markers may not be useful for predicting hybrid performance. The genetic distance analysis using UPGMA clustering system generated 5 genetic clusters with coefficient of 1.26 based on quantitative traits of progenies. The genotypes, DP16, DP14, DP4, DP13, DP12, DP15, DP8, DP1 and DP2 belonging to distant clusters and greater genetic distances could be selected for further breeding programs.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
  20. Soleimani AF, Zulkifli I, Omar AR, Raha AR
    Poult Sci, 2011 Jul;90(7):1427-34.
    PMID: 21673157 DOI: 10.3382/ps.2011-01403
    This study aimed to determine the effect of neonatal feed restriction on plasma corticosterone concentration (CORT), hippocampal glucocorticoid receptor (GR) expression, and heat shock protein (Hsp) 70 expression in aged male Japanese quail subjected to acute heat stress. Equal numbers of chicks were subjected to either ad libitum feeding (AL) or 60% feed restriction on d 4, 5, and 6 (FR). At 21 (young) and 270 (aged) d of age, birds were exposed to 43 ± 1°C for 1 h. Blood and hippocampus samples were collected to determine CORT and Hsp 70 and GR expressions before heat stress and following 1 h of heat stress, 1 h of post-heat stress recovery, and 2 h of post-heat stress recovery. With the use of real-time PCR and enzyme immunoassay, we examined the hippocampal expression of GR and Hsp 70 and CORT. The GR expression of the young birds increased following heat stress and remained consistent throughout the period of recovery. Conversely, no significant changes were noted on GR expression of aged birds. Although both young and aged birds had similar CORT before and during heat stress, the latter exhibited greater values following 1 and 2 h of recovery. Within the young group, feeding regimens had no significant effect on Hsp 70 expression. However, neonatal feed restriction improved Hsp 70 expression in aged birds. Neonatal feed restriction, compared with the AL group, resulted in higher CORT on d 21 but the converse was noted on d 270. Neonatal feed restriction appears to set a robust reactive hypothalamo-pituitary-adrenal response allowing the development of adaptive, healthy, and resilient phenotypes in aged quail as measured by a higher hippocampal Hsp 70 expression along with lower CORT.
    Matched MeSH terms: Reverse Transcriptase Polymerase Chain Reaction
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links