Displaying publications 221 - 240 of 248 in total

Abstract:
Sort:
  1. Butt AM, Amin MC, Katas H, Abdul Murad NA, Jamal R, Kesharwani P
    Mol Pharm, 2016 12 05;13(12):4179-4190.
    PMID: 27934479
    This study investigated the potential of chitosan-coated mixed micellar nanocarriers (polyplexes) for codelivery of siRNA and doxorubicin (DOX). DOX-loaded mixed micelles (serving as cores) were prepared by thin film hydration method and coated with chitosan (CS, serving as outer shell), and complexed with multidrug resistance (MDR) inhibiting siRNA. Selective targeting was achieved by folic acid conjugation. The polyplexes showed pH-responsive enhanced DOX release in acidic tumor pH, resulting in higher intracellular accumulation, which was further augmented by downregulation of mdr-1 gene after treatment with siRNA-complexed polyplexes. In vitro cytotoxicity assay demonstrated an enhanced cytotoxicity in native 4T1 and multidrug-resistant 4T1-mdr cell lines, compared to free DOX. Furthermore, in vivo, polyplexes codelivery resulted in highest DOX accumulation and significantly reduced the tumor volume in mice with 4T1 and 4T1-mdr tumors as compared to the free DOX groups, leading to improved survival times in mice. In conclusion, codelivery of siRNA and DOX via polyplexes has excellent potential as targeted drug nanocarriers for treatment of MDR cancers.
    Matched MeSH terms: Polymers/chemistry
  2. Tajau R, Rohani R, Abdul Hamid SS, Adam Z, Mohd Janib SN, Salleh MZ
    Sci Rep, 2020 12 10;10(1):21704.
    PMID: 33303818 DOI: 10.1038/s41598-020-78601-x
    Polymeric nanoparticles (NPs) are commonly used as nanocarriers for drug delivery, whereby their sizes can be altered for a more efficient delivery of therapeutic active agents with better efficacy. In this work, cross-linked copolymers acted as core-shell NPs from acrylated palm olein (APO) with polyol ester were synthesized via gamma radiation-induced reversible addition-fragmentation chain transfer (RAFT) polymerisation. The particle diameter of the copolymerised poly(APO-b-polyol ester) core-shell NPs was found to be less than 300 nm, have a low molecular weight (MW) of around 24 kDa, and showed a controlled MW distribution of a narrow polydispersity index (PDI) of 1.01. These properties were particularly crucial for further use in designing targeted NPs, with inclusion of peptide for the targeted delivery of paclitaxel. Moreover, the characterisation of the synthesised NPs using Fourier Transform-Infrared (FTIR) and Neutron Magnetic Resonance (NMR) analyses confirmed the possession of biodegradable hydrolysed ester in its chemical structures. Therefore, it can be concluded that the synthesised NPs produced may potentially contribute to better development of a nano-structured drug delivery system for breast cancer therapy.
    Matched MeSH terms: Polymers/chemistry
  3. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Polymers/chemistry*
  4. Das SS, Alkahtani S, Bharadwaj P, Ansari MT, ALKahtani MDF, Pang Z, et al.
    Int J Pharm, 2020 Jul 30;585:119556.
    PMID: 32574684 DOI: 10.1016/j.ijpharm.2020.119556
    In recent years, due to the effective drug delivery and preciseness of tumor sites or microenvironment, the targeted drug delivery approaches have gained ample attention for tumor metastasis therapy. The conventional treatment approaches for metastasis therapy have reported with immense adverse effects because they exhibited maximum probability of killing the carcinogenic cells along with healthy cells. The tumor vasculature, comprising of vasculogenic impressions and angiogenesis, greatly depends upon the growth and metastasis in the tumors. Therefore, various nanocarriers-based delivery approaches for targeting to tumor vasculature have been attempted as efficient and potential approaches for the treatment of tumor metastasis and the associated lesions. Furthermore, the targeted drug delivery approaches have found to be most apt way to overcome from all the limitations and adverse effects associated with the conventional therapies. In this review, various approaches for efficient targeting of pharmacologically active chemotherapeutics against tumor metastasis with the cohesive objectives of prognosis, tracking and therapy are summarized.
    Matched MeSH terms: Polymers/chemistry
  5. Jain A, Sharma G, Kushwah V, Garg NK, Kesharwani P, Ghoshal G, et al.
    Nanomedicine (Lond), 2017 Aug;12(15):1851-1872.
    PMID: 28703643 DOI: 10.2217/nnm-2017-0011
    AIM: This work was intended to investigate the targeting potential of fructose-tethered lipid-polymeric hybrid nanoparticles (F-BC-MTX-LPHNPs) co-loaded with beta carotene (BC) and methotrexate (MTX) in breast cancer therapeutics and find out the possible protective role of BC on MTX-induced toxicity.

    MATERIALS & METHODS: F-BC-MTX-LPHNPs were fabricated using self-assembled nano-precipitation technique. Fructose was conjugated on the surface of the particles. The in vitro cytotoxicity, sub-cellular localization and apoptotic activity of F-BC-MTX-LPHNPs were evaluated against MCF-7 breast cancer cells. The antitumor potential of F-BC-MTX-LPHNPs was further studied.

    RESULTS & CONCLUSION: Outcomes suggested that F-BC-MTX-LPHNPs induced the highest apoptosis index (0.89) against MCF-7 cells. Following 30 days of treatment, the residual tumor progression was assessed to be approximately 32%, in animals treated with F-BC-MTX-LPHNPs. F-BC-MTX-LPHNPs are competent to selectively convey the chemotherapeutic agent to the breast cancers. Beta carotene ameliorated MTX-induced hepatic and renal toxicity.

    Matched MeSH terms: Polymers/chemistry
  6. Fernando HV, Chan LL, Dang N, Santhanes D, Banneheke H, Nalliah S, et al.
    Pharm Dev Technol, 2019 Mar;24(3):348-356.
    PMID: 29799300 DOI: 10.1080/10837450.2018.1481430
    Microporous polymeric matrices prepared from poly(ɛ-caprolactone) [PCL] were evaluated for controlled vaginal delivery of the antiprotozoal agent (tinidazole) in the treatment of the sexually transmitted infection, trichomoniasis. The matrices were produced by rapidly cooling co-solutions of PCL and tinidazole in acetone to -80 °C to induce crystallisation and hardening of the polymer. Tinidazole incorporation in the matrices increased from 1.4 to 3.9% (w/w), when the drug concentration in the starting PCL solution was raised from 10 to 20% (w/w), giving rise to drug loading efficiencies up to 20%. Rapid 'burst release' of 30% of the tinidazole content was recorded over 24 h when the PCL matrices were immersed in simulated vaginal fluid. Gradual drug release occurred over the next 6 days resulting in delivery of around 50% of the tinidazole load by day 7 with the released drug retaining antiprotozoal activity at levels almost 50% that of the 'non-formulated' drug in solution form. Basic modelling predicted that the concentration of tinidazole released into vaginal fluid in vivo from a PCL matrix in the form of an intravaginal ring would exceed the minimum inhibitory concentration against Trichomonas vaginalis. These findings recommend further investigation of PCL matrices as intravaginal devices for controlled delivery of antiprotozoal agents in the treatment and prevention of sexually transmitted infections.
    Matched MeSH terms: Polymers/chemistry
  7. Siow KS, Abdul Rahman AS, Ng PY, Majlis BY
    Mater Sci Eng C Mater Biol Appl, 2020 Feb;107:110225.
    PMID: 31761201 DOI: 10.1016/j.msec.2019.110225
    Role of sulfur (S) and nitrogen (N) groups in promoting cell adhesion or commonly known as biocompatibility, is well established, but their role in reducing bacterial attachment and growth is less explored or not well-understood. Natural sulfur-based compounds, i.e. sulfide, sulfoxide and sulfinic groups, have shown to inhibit bacterial adhesion and biofilm formation. Hence, we mimicked these surfaces by plasma polymerizing thiophene (ppT) and air-plasma treating this ppT to achieve coatings with S of similar oxidation states as natural compounds (ppT-air). In addition, the effects of these N and S groups from ppT-air were also compared with the biocompatible amine-amide from n-heptylamine plasma polymer. Crystal violet assay and live and dead fluorescence staining of E. coli and S. aureus showed that all the N and S coated surfaces generated, including ppHA, ppT and ppT-air, produced similarly potent, growth reduction of both bacteria by approximately 65% at 72 h compared to untreated glass control. The ability of osteogenic differentiation in Wharton's jelly mesenchymal stem cells (WJ-MSCs) were also used to test the cell biocompatibility of these surfaces. Alkaline phosphatase assay and scanning electron microscopy imaging of these WJ-MSCs growths indicated that ppHA, and ppT-air were cell-friendly surfaces, with ppHA showing the highest osteogenic activity. In summary, the N and S containing surfaces could reduce bacteria growth while promoting mammalian cell growth, thus serve as potential candidate surfaces to be explored further for biomaterial applications.
    Matched MeSH terms: Polymers/chemistry*
  8. Pourshahrestani S, Zeimaran E, Kadri NA, Gargiulo N, Jindal HM, Hasikin K, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 May;98:1022-1033.
    PMID: 30812986 DOI: 10.1016/j.msec.2019.01.022
    A novel series of silver-doped mesoporous bioactive glass/poly(1,8-octanediol citrate) (AgMBG/POC) elastomeric biocomposite scaffolds were successfully constructed by a salt-leaching technique for the first time and the effect of inclusion of different AgMBG contents (5, 10, and 20 wt%) on physicochemical and biological properties of pure POC elastomer was evaluated. Results indicated that AgMBG particles were uniformly dispersed in the POC matrix and increasing the AgMBG concentration into POC matrix up to 20 wt% enhanced thermal behaviour, mechanical properties and water uptake ability of the composite scaffolds compared to those from POC. The 20%AgMBG/POC additionally showed higher degradation rate in Tris(hydroxymethyl)-aminomethane-HCl (Tris-HCl) compared with pure POC and lost about 26% of its initial weight after soaking for 28 days. The AgMBG phase incorporation also significantly endowed the resulting composite scaffolds with efficient antibacterial properties against Escherichia coli and Staphylococcus aureus bacteria while preserving their favorable biocompatibility with soft tissue cells (i.e., human dermal fibroblast cells). Taken together, our results suggest that the synergistic effect of both AgMBG and POC make these newly designed AgMBG/POC composite scaffold an attractive candidate for soft tissue engineering applications.
    Matched MeSH terms: Polymers/chemistry*
  9. Liew KB, Peh KK
    Arch Pharm Res, 2021 Aug;44(8):1-10.
    PMID: 25579848 DOI: 10.1007/s12272-014-0542-y
    Orally disintegrating tablet (ODT) is a user friendly and convenient dosage form. The study aimed to investigate the effect of polymers and wheat starch on the tablet properties of lyophilized ODT, with dapoxetine as model drug. Three polymers (hydroxypropylmethyl cellulose, carbopol 934P and Eudragit® EPO) and wheat starch were used as matrix forming materials in preparation of lyophilized ODT. The polymeric dispersion was casted into a mould and kept in a freezer at -20 °C for 4 h before freeze dried for 12 h. It was found that increasing in HPMC and Carbopol 934P concentrations produced tablets with higher hardness and longer disintegration time. In contrast, Eudragit® EPO was unable to form tablet with sufficient hardness at various concentrations. Moreover, HPMC seems to have a stronger effect on tablet hardness compared to Carbopol 934P at the same concentration level. ODT of less friable was obtained. Wheat starch acted as binder which strengthen the hardness of ODTs and prolonged the disintegration time. ODT comprising of HPMC and wheat starch at ratio of 2:1 was found to be optimum based upon the tablet properties. The optimum formulation was palatable and 80 % of the drug was released within 30 min in the dissolution study.
    Matched MeSH terms: Polymers/chemistry*
  10. Venkata Srikanth M, Songa AS, Nali SR, Battu JR, Kolapalli VR
    Drug Dev Ind Pharm, 2014 Jan;40(1):33-45.
    PMID: 23317339 DOI: 10.3109/03639045.2012.744416
    The objective of the present investigation was to study the applicability of thermal sintering technique for the development of gastric floating tablets of propranolol HCl. Formulations were prepared using four independent variables, namely (i) polymer quantity, (ii) sodium bicarbonate concentration, (iii) sintering temperature and (iv) sintering time. Floating lag time and t95 were taken as dependent variables. Tablets were prepared by the direct compression method and were evaluated for physicochemical properties, in vitro buoyancy and dissolution studies. From the drug release studies, it was observed that drug retarding property mainly depends upon the sintering temperature and time of exposure. The statistically optimized formulation (PTSso) was characterized by Fourier transform infrared spectroscopy and differential scanning calorimetry studies, and no significant chemical interaction between drug and polymer was observed. Optimized formulation was stable at accelerated conditions for a period of six months. PTSso was evaluated for in vivo buoyancy studies in humans for both fed and fasted states and found that gastric residence time of the floating tablets were enhanced by fed stage but not in fasted state. Optimized formulation PTSso and commercial formulation Ciplar LA 80 were subjected to bioavailability studies in healthy human volunteers by estimating pharmacokinetic parameters such as Cmax, Tmax, area under curve (AUC), elimination rate constant (Kel), biological half-life (t1/2) and mean residence time (MRT). There was a significant increase in the bioavailability of the propranolol HCl from PTSso formulation, which was evident from increased AUC levels and larger MRT values than Ciplar LA 80.
    Matched MeSH terms: Polymers/chemistry*
  11. Liew KB, Tan YT, Peh KK
    Drug Dev Ind Pharm, 2014 Jan;40(1):110-9.
    PMID: 23311593 DOI: 10.3109/03639045.2012.749889
    Difficulty in swallowing tablets or capsules has been identified as one of the contributing factors to non-compliance of geriatric patients. Although orally disintegrating tablet was designed for fast disintegration in mouth, the fear of taking solid tablets and the risk of choking for certain patient populations still exist.
    Matched MeSH terms: Polymers/chemistry*
  12. Shahid N, Siddique MI, Razzaq Z, Katas H, Waqas MK, Rahman KU
    Drug Dev Ind Pharm, 2018 Dec;44(12):2061-2070.
    PMID: 30081679 DOI: 10.1080/03639045.2018.1509081
    OBJECTIVE: This study was designed to optimize and develop matrix type transdermal drug delivery system (TDDS) containing tizanidine hydrochloride (TZH) using different polymers by solvent evaporation method.

    SIGNIFICANCE: A strong need exists for the development of transdermal patch having improved bioavailability at the site of action with fewer side effects at off-target organs.

    METHODS: The patches were physically characterized by texture analysis (color, flexibility, smoothness, transparency, and homogeneity), in vitro dissolution test and FTIR analysis. Furthermore, functional properties essential for TDDS, in vitro percentage of moisture content, percentage of water uptake, in vitro permeation by following different kinetic models, in vivo drug content estimation and skin irritation were determined using rabbit skin.

    RESULTS: The optimized patches were soft, of uniform texture and thickness as well as pliable in nature. Novel transdermal patch showed ideal characteristics in terms of moisture content and water uptake. FTIR analysis confirmed no interaction between TZH and cellulose acetate phthalate (CAP). The patch showed sustained release of the drug which increased the availability of short acting TZH at the site of action. The patch also showed its biocompatibility to the in vivo model of rabbit skin.

    CONCLUSIONS: The results demonstrated that topically applied transdermal patch will be a potential medicated sustain release patch for muscle pain which will improve patient compliance.

    Matched MeSH terms: Polymers/chemistry
  13. Sheshala R, Quah SY, Tan GC, Meka VS, Jnanendrappa N, Sahu PS
    Drug Deliv Transl Res, 2019 04;9(2):434-443.
    PMID: 29392681 DOI: 10.1007/s13346-018-0488-6
    The objectives of present research were to develop and characterize thermosensitive and mucoadhesive polymer-based sustained release moxifloxacin in situ gels for the treatment of periodontal diseases. Poloxamer- and chitosan-based in situ gels are in liquid form at room temperature and transform into gel once administered into periodontal pocket due to raise in temperature to 37 °C. Besides solution-to-gel characteristic of polymers, their mucoadhesive nature aids the gel to adhere to mucosa in periodontal pocket for prolonged time and releases the drug in sustained manner. These formulations were prepared using cold method and evaluated for pH, solution-gel temperature, syringeability and viscosity. In vitro drug release studies were conducted using dialysis membrane at 37 °C and 50 rpm. Antimicrobial studies carried out against Aggregatibacter actinomycetemcomitans (A.A.) and Streptococcus mutans (S. Mutans) using agar cup-plate method. The prepared formulations were clear and pH was at 7.01-7.40. The viscosity of formulations was found to be satisfactory. Among the all, formulations comprising of 21% poloxamer 407 and 2% poloxamer 188 (P5) and in combination with 0.5% HPMC (P6) as well as 2% chitosan and 70% β-glycerophosphate (C6) demonstrated an ideal gelation temperature (33-37 °C) and sustained the drug release for 8 h. Formulations P6 and C6 showed promising antimicrobial efficacy with zone of inhibition of 27 mm for A.A. and 55 mm for S. Mutans. The developed sustained release in situ gel formulations could enhance patient's compliance by reducing the dosing frequency and also act as an alternative treatment to curb periodontitis.
    Matched MeSH terms: Polymers/chemistry
  14. Ahmed S, Govender T, Khan I, Rehman NU, Ali W, Shah SMH, et al.
    Drug Des Devel Ther, 2018;12:255-269.
    PMID: 29440875 DOI: 10.2147/DDDT.S148912
    Background and aim: The challenges with current antimicrobial drug therapy and resistance remain a significant global health threat. Nanodrug delivery systems are playing a crucial role in overcoming these challenges and open new avenues for effective antimicrobial therapy. While fluticasone (FLU), a poorly water-soluble corticosteroid, has been reported to have potential antimicrobial activity, approaches to optimize its dissolution profile and antimicrobial activity are lacking in the literature. This study aimed to combine an experimental study with molecular modeling to design stable FLU nanopolymeric particles with enhanced dissolution rates and antimicrobial activity.

    Methods: Six different polymers were used to prepare FLU nanopolymeric particles: hydroxyl propyl methylcellulose (HPMC), poly (vinylpyrrolidone) (PVP), poly (vinyl alcohol) (PVA), ethyl cellulose (EC), Eudragit (EUD), and Pluronics®. A low-energy method, nanoprecipitation, was used to prepare the polymeric nanoparticles.

    Results and conclusion: The combination of HPMC-PVP and EUD-PVP was found most effective to produce stable FLU nanoparticles, with particle sizes of 250 nm ±2.0 and 280 nm ±4.2 and polydispersity indices of 0.15 nm ±0.01 and 0.25 nm ±0.03, respectively. The molecular modeling studies endorsed the same results, showing highest polymer drug binding free energies for HPMC-PVP-FLU (-35.22 kcal/mol ±0.79) and EUD-PVP-FLU (-25.17 kcal/mol ±1.12). In addition, it was observed that Ethocel® favored a wrapping mechanism around the drug molecules rather than a linear conformation that was witnessed for other individual polymers. The stability studies conducted for 90 days demonstrated that HPMC-PVP-FLU nanoparticles stored at 2°C-8°C and 25°C were more stable. Crystallinity of the processed FLU nanoparticles was confirmed using differential scanning calorimetry, powder X-ray diffraction analysis and TEM. The Fourier transform infrared spectroscopy (FTIR) studies showed that there was no chemical interaction between the drug and chosen polymer system. The HPMC-PVP-FLU nanoparticles also showed enhanced dissolution rate (P<0.05) compared to the unprocessed counterpart. The in vitro antibacterial studies showed that HPMC-PVP-FLU nanoparticles displayed superior effect against gram-positive bacteria compared to the unprocessed FLU and positive control.

    Matched MeSH terms: Polymers/chemistry*
  15. Hussain Z, Thu HE, Ng SF, Khan S, Katas H
    Colloids Surf B Biointerfaces, 2017 Feb 01;150:223-241.
    PMID: 27918967 DOI: 10.1016/j.colsurfb.2016.11.036
    Wound healing is a multifarious and vibrant process of replacing devitalized and damaged cellular structures, leading to restoration of the skin's barrier function, re-establishment of tissue integrity, and maintenance of the internal homeostasis. Curcumin (CUR) and its analogs have gained widespread recognition due to their remarkable anti-inflammatory, anti-infective, anticancer, immunomodulatory, antioxidant, and wound healing activities. However, their pharmaceutical significance is limited due to inherent hydrophobic nature, poor water solubility, low bioavailability, chemical instability, rapid metabolism and short half-life. Owing to their pharmaceutical limitations, newer strategies have been attempted in recent years aiming to mitigate problems related to the effective delivery of curcumanoids and to improve their wound healing potential. These advanced strategies include nanovesicles, polymeric micelles, conventional liposomes and hyalurosomes, nanocomposite hydrogels, electrospun nanofibers, nanohybrid scaffolds, nanoconjugates, nanostructured lipid carriers (NLCs), nanoemulsion, nanodispersion, and polymeric nanoparticles (NPs). The superior wound healing activities achieved after nanoencapsulation of the CUR are attributed to its target-specific delivery, longer retention at the target site, avoiding premature degradation of the encapsulated cargo and the therapeutic superiority of the advanced delivery systems over the conventional delivery. We have critically reviewed the literature and summarize the convincing evidence which explore the pharmaceutical significance and therapeutic feasibility of the advanced delivery systems in improving wound healing activities of the CUR and its analogs.
    Matched MeSH terms: Polymers/chemistry
  16. Ganguly A, Ian CK, Sheshala R, Sahu PS, Al-Waeli H, Meka VS
    J Mater Sci Mater Med, 2017 Mar;28(3):39.
    PMID: 28144851 DOI: 10.1007/s10856-017-5852-4
    The objective of this study was to prepare periodontal gels using natural polymers such as badam gum, karaya gum and chitosan. These gels were tested for their physical and biochemical properties and assessed for their antibacterial activity against Aggregatibacter actinomycetemcomitans and Streptococcus mutans, two pathogens associated with periodontal disease. Badam gum, karaya gum and chitosan were used to prepare gels of varying concentrations. Moxifloxacin hydrochloride, a known antimicrobial drug was choosen in the present study and it was added to the above gels. The gels were then run through a battery of tests in order to determine their physical properties such as pH and viscosity. Diffusion studies were carried out on the gels containing the drug. Antimicrobial testing of the gels against various bacteria was then carried out to determine the effectiveness of the gels against these pathogens. The results showed that natural polymers can be used to produce gels. These gels do not have inherent antimicrobial properties against A. actinomycetemcomitans and S. mutans. However, they can be used as a transport vehicle to carry and release antimicrobial drugs.
    Matched MeSH terms: Polymers/chemistry
  17. Chan Y, Ng SW, Singh SK, Gulati M, Gupta G, Chaudhary SK, et al.
    Life Sci, 2021 Sep 01;280:119744.
    PMID: 34174324 DOI: 10.1016/j.lfs.2021.119744
    Viral respiratory tract infections have significantly impacted global health as well as socio-economic growth. Respiratory viruses such as the influenza virus, respiratory syncytial virus (RSV), and the recent SARS-CoV-2 infection (COVID-19) typically infect the upper respiratory tract by entry through the respiratory mucosa before reaching the lower respiratory tract, resulting in respiratory disease. Generally, vaccination is the primary method in preventing virus pathogenicity and it has been shown to remarkably reduce the burden of various infectious diseases. Nevertheless, the efficacy of conventional vaccines may be hindered by certain limitations, prompting the need to develop novel vaccine delivery vehicles to immunize against various strains of respiratory viruses and to mitigate the risk of a pandemic. In this review, we provide an insight into how polymer-based nanoparticles can be integrated with the development of vaccines to effectively enhance immune responses for combating viral respiratory tract infections.
    Matched MeSH terms: Polymers/chemistry*
  18. Abdullah N, Yusof N, Abu Shah MH, Wan Ikhsan SN, Ng ZC, Maji S, et al.
    Environ Sci Pollut Res Int, 2019 Jul;26(20):20386-20399.
    PMID: 31102226 DOI: 10.1007/s11356-019-05208-9
    In this present study, adsorptive membranes for Cr(VI) ion removal were prepared by blending polyethersulfone (PES) with hydrous ferric oxide (HFO) nanoparticles (NPs). The effects of HFO NPs to PES weight ratio (0-1.5) on the physicochemical properties of the resultant HFO/PES adsorptive membranes were investigated with respect to the surface chemistry and roughness as well as structural morphologies using different analytical instruments. The adsorptive performance of the HFO NPs/PES membranes was studied via batch adsorption experiments under various conditions by varying solution pH, initial concentration of Cr(VI), and contact time. The results showed that the membrane made of HFO/PES at a weight ratio of 1.0 exhibited the highest adsorption capacity which is 13.5 mg/g. Isotherm and kinetic studies revealed that the mechanism is best fitted to the Langmuir model and pseudo-second-order model. For filtration of Cr(VI), the best promising membranes showed improved water flux (629.3 L/m2 h) with Cr(VI) ion removal of 75%. More importantly, the newly developed membrane maintained the Cr(VI) concentration below the maximum contamination level (MCL) for up to 9 h.
    Matched MeSH terms: Polymers/chemistry
  19. Bose RJC, Tharmalingam N, Choi Y, Madheswaran T, Paulmurugan R, McCarthy JR, et al.
    Int J Nanomedicine, 2020;15:8437-8449.
    PMID: 33162754 DOI: 10.2147/IJN.S271850
    BACKGROUND: Lipid polymer hybrid nanoparticles (LPHNPs) have been widely investigated in drug and gene delivery as well as in medical imaging. A knowledge of lipid-based surface engineering and its effects on how the physicochemical properties of LPHNPs affect the cell-nanoparticle interactions, and consequently how it influences the cytological response, is in high demand.

    METHODS: Herein, we have engineered antibiotic-loaded (doxycycline or vancomycin) LPHNPs with cationic and zwitterionic lipids and examined the effects on their physicochemical characteristics (size and charge), antibiotic entrapment efficiency, and the in vitro intracellular bacterial killing efficiency against Mycobacterium smegmatis or Staphylococcus aureus infected macrophages.

    RESULTS: The incorporation of cationic or zwitterionic lipids in the LPHNP formulation resulted in a size reduction in LPHNPs formulations and shifted the surface charge of bare NPs towards positive or neutral values. Also observed were influences on the drug incorporation efficiency and modulation of the drug release from the biodegradable polymeric core. The therapeutic efficacy of LPHNPs loaded with vancomycin was improved as its minimum inhibitory concentration (MIC) (2 µg/mL) versus free vancomycin (4 µg/mL). Importantly, our results show a direct relationship between the cationic surface nature of LPHNPs and its intracellular bacterial killing efficiency as the cationic doxycycline or vancomycin loaded LPHNPs reduced 4 or 3 log CFU respectively versus the untreated controls.

    CONCLUSION: In our study, modulation of surface charge in the nanomaterial formulation increased macrophage uptake and intracellular bacterial killing efficiency of LPHNPs loaded with antibiotics, suggesting alternate way for optimizing their use in biomedical applications.

    Matched MeSH terms: Polymers/chemistry
  20. Janib SM, Gustafson JA, Minea RO, Swenson SD, Liu S, Pastuszka MK, et al.
    Biomacromolecules, 2014 Jul 14;15(7):2347-58.
    PMID: 24871936 DOI: 10.1021/bm401622y
    Recombinant protein therapeutics have increased in number and frequency since the introduction of human insulin, 25 years ago. Presently, proteins and peptides are commonly used in the clinic. However, the incorporation of peptides into clinically approved nanomedicines has been limited. Reasons for this include the challenges of decorating pharmaceutical-grade nanoparticles with proteins by a process that is robust, scalable, and cost-effective. As an alternative to covalent bioconjugation between a protein and nanoparticle, we report that biologically active proteins may themselves mediate the formation of small multimers through steric stabilization by large protein polymers. Unlike multistep purification and bioconjugation, this approach is completed during biosynthesis. As proof-of-principle, the disintegrin protein called vicrostatin (VCN) was fused to an elastin-like polypeptide (A192). A significant fraction of fusion proteins self-assembled into multimers with a hydrodynamic radius of 15.9 nm. The A192-VCN fusion proteins compete specifically for cell-surface integrins on human umbilical vein endothelial cells (HUVECs) and two breast cancer cell lines, MDA-MB-231 and MDA-MB-435. Confocal microscopy revealed that, unlike linear RGD-containing protein polymers, the disintegrin fusion protein undergoes rapid cellular internalization. To explore their potential clinical applications, fusion proteins were characterized using small animal positron emission tomography (microPET). Passive tumor accumulation was observed for control protein polymers; however, the tumor accumulation of A192-VCN was saturable, which is consistent with integrin-mediated binding. The fusion of a protein polymer and disintegrin results in a higher intratumoral contrast compared to free VCN or A192 alone. Given the diversity of disintegrin proteins with specificity for various cell-surface integrins, disintegrin fusions are a new source of biomaterials with potential diagnostic and therapeutic applications.
    Matched MeSH terms: Polymers/chemistry*
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links