Displaying publications 221 - 240 of 1023 in total

Abstract:
Sort:
  1. Choi KS, Kye SJ, Kim JY, To TL, Nguyen DT, Lee YJ, et al.
    Trop Anim Health Prod, 2014 Jan;46(1):271-7.
    PMID: 24061688 DOI: 10.1007/s11250-013-0475-3
    Newcastle disease virus (NDV) causes significant economic losses to the poultry industry in Southeast Asia. In the present study, 12 field isolates of NDV were recovered from dead village chickens in Vietnam between 2007 and 2012, and were characterized. All the field isolates were classified as velogenic. Based on the sequence analysis of the F variable region, two distinct genetic groups (Vietnam genetic groups G1 and G2) were recognized. Phylogenetic analysis revealed that all the 12 field isolates fell into the class II genotype VII cluster. Ten of the field isolates, classified as Vietnam genetic group G1, were closely related to VIIh viruses that had been isolated from Indonesia, Malaysia, and Cambodia since the mid-2000s, while the other two field isolates, of Vietnam genetic group G2, clustered with VIId viruses, which were predominantly circulating in China and Far East Asia. Our results indicate that genotype VII viruses, especially VIIh viruses, are predominantly responsible for the recent epizootic of the disease in Vietnam.
    Matched MeSH terms: Gene Expression Regulation, Viral/physiology
  2. Ebrahimi Nigjeh S, Yusoff FM, Mohamed Alitheen NB, Rasoli M, Keong YS, Omar AR
    Biomed Res Int, 2013;2013:783690.
    PMID: 23509778 DOI: 10.1155/2013/783690
    Marine microalgae have been prominently featured in cancer research. Here, we examined cytotoxic effect and apoptosis mechanism of crude ethanol extracts of an indigenous microalga, Chaetoceros calcitrans (UPMAAHU10) on human breast cell lines. MCF-7 was more sensitive than MCF-10A with IC50 value of 3.00 ± 0.65, whilst the IC50 value of Tamoxifen against MCF-7 was 12.00 ± 0.52  μg/mL after 24 hour incubation. Based on Annexin V/Propidium iodide and cell cycle flow cytometry analysis, it was found that inhibition of cell growth by EEC on MCF-7 cells was through the induction of apoptosis without cell cycle arrest. The apoptotic cells at subG0/G1 phase in treated MCF-7 cells at 48 and 72 hours showed 34 and 16 folds increased compared to extract treated MCF-10A cells which showed only 6 and 7 folds increased at the same time points, respectively. Based on GeXP study, EEC induced apoptosis on MCF-7 cells via modulation of CDK2, MDM2, p21Cip1, Cyclin A2, Bax and Bcl-2. The EEC treated MCF-7 cells also showed an increase in Bax/Bcl-2 ratio that in turn activated the caspase-dependent pathways by activating caspase 7. Thus, marine microalga, Chaetoceros calcitrans may be considered a good candidate to be developed as a new anti-breast cancer drug.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic*
  3. Makpol S, Zainuddin A, Chua KH, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:454328.
    PMID: 23634235 DOI: 10.1155/2013/454328
    The effect of γ -tocotrienol, a vitamin E isomer, in modulating gene expression in cellular aging of human diploid fibroblasts was studied. Senescent cells at passage 30 were incubated with 70  μ M of γ -tocotrienol for 24 h. Gene expression patterns were evaluated using Sentrix HumanRef-8 Expression BeadChip from Illumina, analysed using GeneSpring GX10 software, and validated using quantitative RT-PCR. A total of 100 genes were differentially expressed (P < 0.001) by at least 1.5 fold in response to γ -tocotrienol treatment. Amongst the genes were IRAK3, SelS, HSPA5, HERPUD1, DNAJB9, SEPR1, C18orf55, ARF4, RINT1, NXT1, CADPS2, COG6, and GLRX5. Significant gene list was further analysed by Gene Set Enrichment Analysis (GSEA), and the Normalized Enrichment Score (NES) showed that biological processes such as inflammation, protein transport, apoptosis, and cell redox homeostasis were modulated in senescent fibroblasts treated with γ -tocotrienol. These findings revealed that γ -tocotrienol may prevent cellular aging of human diploid fibroblasts by modulating gene expression.
    Matched MeSH terms: Gene Expression Regulation/drug effects*
  4. Cheng A, Ismail I, Osman M, Hashim H
    Int J Mol Sci, 2012;13(5):6156-66.
    PMID: 22754356 DOI: 10.3390/ijms13056156
    The polymorphisms of Waxy (Wx) microsatellite and G-T single-nucleotide polymorphism (SNP) in the Wx gene region were analyzed using simplified techniques in fifteen rice varieties. A rapid and reliable electrophoresis method, MetaPhor agarose gel electrophoresis (MAGE), was effectively employed as an alternative to polyacrylamide gel electrophoresis (PAGE) for separating Wx microsatellite alleles. The amplified products containing the Wx microsatellite ranged from 100 to 130 bp in length. Five Wx microsatellite alleles, namely (CT)(10), (CT)(11), (CT)(16), (CT)(17), and (CT)(18) were identified. Of these, (CT)(11) and (CT)(17) were the predominant classes among the tested varieties. All varieties with an apparent amylose content higher than 24% were associated with the shorter repeat alleles; (CT)(10) and (CT)(11), while varieties with 24% or less amylose were associated with the longer repeat alleles. All varieties with intermediate and high amylose content had the sequence AGGTATA at the 5'-leader intron splice site, while varieties with low amylose content had the sequence AGTTATA. The G-T polymorphism was further verified by the PCR-AccI cleaved amplified polymorphic sequence (CAPS) method, in which only genotypes containing the AGGTATA sequence were cleaved by AccI. Hence, varieties with desirable amylose levels can be developed rapidly using the Wx microsatellite and G-T SNP, along with MAGE.
    Matched MeSH terms: Gene Expression Regulation, Enzymologic; Gene Expression Regulation, Plant
  5. Hashim NH, Bharudin I, Nguong DL, Higa S, Bakar FD, Nathan S, et al.
    Extremophiles, 2013 Jan;17(1):63-73.
    PMID: 23132550 DOI: 10.1007/s00792-012-0494-4
    The psychrophilic yeast Glaciozyma antarctica demonstrated high antifreeze activity in its culture filtrate. The culture filtrate exhibited both thermal hysteresis (TH) and ice recrystallization inhibition (RI) properties. The TH of 0.1 °C was comparable to that previously reported for bacteria and fungi. A genome sequence survey of the G. antarctica genome identified a novel antifreeze protein gene. The cDNA encoded a 177 amino acid protein with 30 % similarity to a fungal antifreeze protein from Typhula ishikariensis. The expression levels of AFP1 were quantified via real time-quantitative polymerase chain reaction (RT-qPCR), and the highest expression levels were detected within 6 h of growth at -12 °C. The cDNA of the antifreeze protein was cloned into an Escherichia coli expression system. Expression of recombinant Afp1 in E. coli resulted in the formation of inclusion bodies that were subsequently denatured by treatment with urea and allowed to refold in vitro. Activity assays of the recombinant Afp1 confirmed the antifreeze protein properties with a high TH value of 0.08 °C.
    Matched MeSH terms: Gene Expression Regulation, Fungal/physiology*
  6. Liew JC, Tan WS, Alitheen NB, Chan ES, Tey BT
    J Biosci Bioeng, 2010 Sep;110(3):338-44.
    PMID: 20547346 DOI: 10.1016/j.jbiosc.2010.02.017
    Serum deprivation inhibits cell growth and initiates apoptosis cell death in mammalian cell cultures. Since apoptosis is a genetically controlled cell death pathway, over-expression of anti-apoptotic proteins may provide a way to delay apoptosis. This study investigated the ability of the X-linked inhibitor of apoptosis protein (XIAP) to inhibit apoptosis induced by serum deprivation. Study includes evaluation of the ability of XIAP to prolong culture period and its effect on cell proliferation in serum-deprived media. The full length human XIAP was introduced into CHO-K1 cell lines and the effects of XIAP over-expression on the inhibition of apoptosis induced by serum-deprived conditions were examined. In batch cultures, cells over-expressing XIAP showed decreased levels of apoptosis and a higher number of viable cell under serum-deprived conditions compared to the control cell lines. The viability of control cells dropped to 40% after 2days of serum deprivation, the XIAP expressing cells still maintained at a viability higher than 90%. Further investigation revealed that the caspase-3 activity of the CHO-K1 cell line was inhibited as a result of XIAP expression.
    Matched MeSH terms: Gene Expression Regulation/physiology
  7. Al-Aqil A, Zulkifli I
    Poult Sci, 2009 Jul;88(7):1358-64.
    PMID: 19531704 DOI: 10.3382/ps.2008-00554
    An experiment was conducted to determine the effects of 2 types of housing systems and early age feed restriction on heat shock protein (hsp) 70 expression and blood parameters in broiler chickens subjected to road transportation. On d 1, female chicks were housed either in windowless environmentally controlled chambers (temperature was set at 32 degrees C on d 1 and gradually reduced to 23 degrees C by d 21; CH) or in conventional open-sided houses (OH) with cyclic temperatures (minimum, 24 degrees C; maximum, 34 degrees C). Equal number of chicks from each housing system were subjected to either ad libitum feeding or 60% feed restriction on d 4, 5, and 6 (FR). On d 42, all of the birds were crated and transported for 6 h. Birds raised in OH had smaller increases in heterophil:lymphocyte ratios and plasma corticosterone concentrations than those of CH. Subjecting birds to FR dampened heterophil:lymphocyte ratios and corticosterone reactions to transportation. After 4 h of transportation, the OH birds had greater hsp 70 expression than their CH counterparts. Within the CH, the FR chicks showed higher hsp 70 density than those of the ad libitum-fed group. Except for glucose, housing system had a negligible effect on serum levels of cholesterol, potassium, and chloride. Collectively, the results suggest that the improved tolerance to transport stress in OH and FR chicks could be associated with better hsp 70 expression.
    Matched MeSH terms: Gene Expression Regulation/physiology*
  8. Teoh PH, Shu-Chien AC, Chan WK
    Dev. Dyn., 2010 Mar;239(3):865-74.
    PMID: 20108353 DOI: 10.1002/dvdy.22221
    pbx1, a TALE (three-amino acid loop extension) homeodomain transcription factor, is involved in a diverse range of developmental processes. We examined the expression of pbx1 during zebrafish development by in situ hybridization. pbx1 transcripts could be detected in the central nervous system and pharyngeal arches from 24 hpf onwards. In the swim bladder anlage, pbx1 was detected as early as 28 hpf, making it the earliest known marker for this organ. Morpholino-mediated gene knockdown of pbx1 revealed that the swim bladder failed to inflate, with eventual lethality occurring by 8 dpf. The knockdown of pbx1 did not perturb the expression of prdc and foxA3, with both early swim bladder markers appearing normally at 36 and 48 hpf, respectively. However, the expression of anxa5 was completely abolished by pbx1 knockdown at 60 hpf suggesting that pbx1 may be required during the late stage of swim bladder development.
    Matched MeSH terms: Gene Expression Regulation, Developmental*
  9. Ong SS, Wickneswari R
    PLoS One, 2012;7(11):e49662.
    PMID: 23251324 DOI: 10.1371/journal.pone.0049662
    MicroRNAs (miRNAs) play critical regulatory roles by acting as sequence specific guide during secondary wall formation in woody and non-woody species. Although thousands of plant miRNAs have been sequenced, there is no comprehensive view of miRNA mediated gene regulatory network to provide profound biological insights into the regulation of xylem development. Herein, we report the involvement of six highly conserved amg-miRNA families (amg-miR166, amg-miR172, amg-miR168, amg-miR159, amg-miR394, and amg-miR156) as the potential regulatory sequences of secondary cell wall biosynthesis. Within this highly conserved amg-miRNA family, only amg-miR166 exhibited strong differences in expression between phloem and xylem tissue. The functional characterization of amg-miR166 targets in various tissues revealed three groups of HD-ZIP III: ATHB8, ATHB15, and REVOLUTA which play pivotal roles in xylem development. Although these three groups vary in their functions, -psRNA target analysis indicated that miRNA target sequences of the nine different members of HD-ZIP III are always conserved. We found that precursor structures of amg-miR166 undergo exhaustive sequence variation even within members of the same family. Gene expression analysis showed three key lignin pathway genes: C4H, CAD, and CCoAOMT were upregulated in compression wood where a cascade of miRNAs was downregulated. This study offers a comprehensive analysis on the involvement of highly conserved miRNAs implicated in the secondary wall formation of woody plants.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  10. Abu Kasim NH, Govindasamy V, Gnanasegaran N, Musa S, Pradeep PJ, Srijaya TC, et al.
    J Tissue Eng Regen Med, 2015 Dec;9(12):E252-66.
    PMID: 23229816 DOI: 10.1002/term.1663
    The discovery of mesenchymal stem cells (MSCs) from a myriad of tissues has triggered the initiative of establishing tailor-made stem cells for disease-specific therapy. Nevertheless, lack of understanding on the inherent differential propensities of these cells may restrict their clinical outcome. Therefore, a comprehensive study was done to compare the proliferation, differentiation, expression of cell surface markers and gene profiling of stem cells isolated from different sources, viz. bone marrow, Wharton's jelly, adipose tissue and dental pulp. We found that although all MSCs were phenotypically similar to each other, Wharton's jelly (WJ) MSCs and dental pulp stem cells (DPSCs) were highly proliferative as compared to bone marrow (BM) MSCs and adipose tissue (AD) MSCs. Moreover, indistinguishable cell surface characteristics and differentiation capacity were confirmed to be similar among all cell types. Based on gene expression profiling, we postulate that BM-MSCs constitutively expressed genes related to inflammation and immunodulation, whereas genes implicated in tissue development were highly expressed in AD-MSCs. Furthermore, the transcriptome profiling of WJ-MSCs and DPSCs revealed an inherent bias towards the neuro-ectoderm lineage. Based on our findings, we believe that there is no unique master mesenchymal stem cell that is appropriate to treat all target diseases. More precisely, MSCs from different sources exhibit distinct and unique gene expression signatures that make them competent to give rise to specific lineages rather than others. Therefore, stem cells should be subjected to rigorous characterization and utmost vigilance needs to be adopted in order to choose the best cellular source for a particular disease.
    Matched MeSH terms: Gene Expression Regulation*
  11. Ee SF, Oh JM, Mohd Noor N, Kwon TR, Mohamed-Hussein ZA, Ismail I, et al.
    Mol Biol Rep, 2013 Mar;40(3):2231-41.
    PMID: 23187733 DOI: 10.1007/s11033-012-2286-4
    The importance of plant secondary metabolites for both mankind and the plant itself has long been established. However, despite extensive research on plant secondary metabolites, plant secondary metabolism and its regulation still remained poorly characterized. In this present study, cDNA-amplified fragment length polymorphism (cDNA-AFLP) transcript profiling was applied to generate the expression profiles of Polygonum minus in response to salicylic acid (SA) and methyl jasmonate (MeJA) elicitations. This study reveals two different sets of genes induced by SA and MeJA, respectively where stress-related genes were proved to lead to the expression of genes involved in plant secondary metabolite biosynthetic pathways. A total of 98 transcript-derived fragments (TDFs) were up-regulated, including 46 from SA-treated and 52 from MeJA-treated samples. The cDNA-AFLP transcripts generated using 64 different Mse1/Taq1 primer combinations showed that treatments with SA and MeJA induced genes mostly involved in scavenging reactive oxygen species, including zeaxanthin epoxidase, cytosolic ascorbate peroxidase 1 and peroxidase. Of these stress-related genes, 15 % of other annotated TDFs are involved mainly in secondary metabolic processes where among these, two genes encoding (+)-delta cadinene synthase and cinnamoyl-CoA reductase were highlighted.
    Matched MeSH terms: Gene Expression Regulation, Plant/drug effects*
  12. Ebrahimi M, Rajion MA, Goh YM, Sazili AQ, Schonewille JT
    Biomed Res Int, 2013;2013:194625.
    PMID: 23484090 DOI: 10.1155/2013/194625
    This study was conducted to determine the effects of feeding oil palm frond silage based diets with added linseed oil (LO) containing high α -linolenic acid (C18:3n-3), namely, high LO (HLO), low LO (LLO), and without LO as the control group (CON) on the fatty acid (FA) composition of subcutaneous adipose tissue and the gene expression of peroxisome proliferator-activated receptor (PPAR) α , PPAR- γ , and stearoyl-CoA desaturase (SCD) in Boer goats. The proportion of C18:3n-3 in subcutaneous adipose tissue was increased (P < 0.01) by increasing the LO in the diet, suggesting that the FA from HLO might have escaped ruminal biohydrogenation. Animals fed HLO diets had lower proportions of C18:1 trans-11, C18:2n-6, CLA cis-9 trans-11, and C20:4n-6 and higher proportions of C18:3n-3, C22:5n-3, and C22:6n-3 in the subcutaneous adipose tissue than animals fed the CON diets, resulting in a decreased n-6:n-3 fatty acid ratio (FAR) in the tissue. In addition, feeding the HLO diet upregulated the expression of PPAR- γ (P < 0.05) but downregulated the expression of SCD (P < 0.05) in the adipose tissue. The results of the present study show that LO can be safely incorporated in the diets of goats to enrich goat meat with potential health beneficial FA (i.e., n-3 FA).
    Matched MeSH terms: Gene Expression Regulation/drug effects
  13. Fatimah SS, Tan GC, Chua K, Tan AE, Nur Azurah AG, Hayati AR
    Burns, 2013 Aug;39(5):905-15.
    PMID: 23273814 DOI: 10.1016/j.burns.2012.10.019
    The aim of the present study was to determine the effects of KGF on the differentiation of cultured human amnion epithelial cells (HAECs) towards skin keratinocyte. HAECs at passage 1 were cultured in medium HAM's F12: Dulbecco's Modified Eagles Medium (1:1) supplemented with different concentrations of KGF (0, 5, 10, 20, 30 and 50 ng/ml KGF). Dose-response of KGF on HAECs was determined by morphological assessment; growth kinetic evaluation; immunocytochemical analysis; stemness and epithelial gene expression quantification with two step real time RT-PCR. KGF promotes the proliferation of HAECs with maximal effect observed at 10 ng/ml KGF. However, KGF decreased the stemness genes expression: Oct-3/4, Sox-2, Nanog3, Rex-1, FGF-4, FZD-9 and BST-1. KGF also down-regulates epithelial genes expression: CK3, CK18, CK19, Integrin-β1, p63 and involucrin in cultured HAECs. No significant difference on the gene expression was detected for each Nestin, ABCG-2, CK1 and CK14 in KGF-treated HAECs. Immunocytochemical analysis for both control and KGF-treated HAECs demonstrated positive staining against CK14 and CK18 but negative staining against involucrin. The results suggested that KGF stimulates an early differentiation of HAECs towards epidermal cells. Differentiation of KGF-treated HAECs to corneal lineage is unfavourable. Therefore, further studies are needed to elucidate the roles of KGF in the differentiation of HAECs towards skin keratinocytes.
    Matched MeSH terms: Gene Expression Regulation/drug effects
  14. Nesaretnam K, Ambra R, Selvaduray KR, Radhakrishnan A, Canali R, Virgili F
    Ann N Y Acad Sci, 2004 Dec;1031:143-57.
    PMID: 15753141
    Vitamin E is important not only for its cellular antioxidant and lipid-lowering properties, but also as an antiproliferating agent. It has also been shown to contribute to immunoregulation, antibody production, and resistance to implanted tumors. It has recently been shown that tocotrienols are the components of vitamin E responsible for growth inhibition in human breast cancer cells in vitro as well as in vivo through estrogen-independent mechanisms. Although tocotrienols act on cell proliferation in a dose-dependent manner and can induce programmed cell death, no specific gene regulation has yet been identified. In order to investigate the molecular basis of the effect of a tocotrienol-rich fraction (TRF) from palm oil, we performed a cDNA array analysis of cancer-related gene expression in estrogen-dependent (MCF-7) and estrogen-independent (MDA-MB-231) human breast cancer cells. The human breast cancer cells were incubated with or without 8 mug/mL of tocotrienols for 72 h. RNA was subsequently extracted and subjected to reverse transcription before being hybridized onto cancer arrays. Tocotrienol supplementation modulated significantly 46 out of 1200 genes in MDA-MB-231 cells. In MCF-7 cells, tocotrienol administration was associated with a lower number of affected genes. Interestingly, only three were affected in a similar fashion in both cell lines: c-myc binding protein MM-1, 23-kDa highly basic protein, and interferon-inducible protein 9-27 (IFITM-1). These proteins are most likely involved in the cell cycle and can exert inhibitory effects on cell growth and differentiation of the tumor cell lines. These data suggest that tocotrienols are able to affect cell homeostasis, possibly independent of their antioxidant activity.
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects*
  15. Cheah BH, Nadarajah K, Divate MD, Wickneswari R
    BMC Genomics, 2015;16:692.
    PMID: 26369665 DOI: 10.1186/s12864-015-1851-3
    Developing drought-tolerant rice varieties with higher yield under water stressed conditions provides a viable solution to serious yield-reduction impact of drought. Understanding the molecular regulation of this polygenic trait is crucial for the eventual success of rice molecular breeding programmes. microRNAs have received tremendous attention recently due to its importance in negative regulation. In plants, apart from regulating developmental and physiological processes, microRNAs have also been associated with different biotic and abiotic stresses. Hence here we chose to analyze the differential expression profiles of microRNAs in three drought treated rice varieties: Vandana (drought-tolerant), Aday Sel (drought-tolerant) and IR64 (drought-susceptible) in greenhouse conditions via high-throughput sequencing.
    Matched MeSH terms: Gene Expression Regulation, Plant*
  16. Pratama E, Tian X, Lestari W, Iseki S, Ichwan SJ, Ikeda MA
    Biochem Biophys Res Commun, 2015 Dec;468(1-2):248-54.
    PMID: 26519881 DOI: 10.1016/j.bbrc.2015.10.121
    ARID3A and ARID3B are transcriptional targets of p53. Recently, it has been reported that ARID3A plays a critical role in the transcriptional activation of pro-arrest p21 in response to DNA damage. However, the role of ARID3B in the p53 regulatory pathway remains poorly understood. Here we show that ARID3A and ARID3B specifically bind to putative ARID3-binding sites in p53 target genes in vitro and in vivo. ARID3B and, to a lesser extent, ARID3A silencing blocked transcriptional activation of pro-apoptotic p53 target genes, such as PUMA, PIG3, and p53. Furthermore, ectopic ARID3B, to a lesser extent, ARID3A expression activated the pro-apoptotic gene expression, and only ARID3B induced apoptosis. Finally, ARID3B but not ARID3A silencing blocked apoptosis induction following DNA damage. These results indicated that, although ARID3B and ARID3A share overlapping functions, ARID3B play a key role in the expression of pro-apoptotic p53-target genes and apoptosis.
    Matched MeSH terms: Gene Expression Regulation*
  17. Vijayarathna S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(14):6175-6.
    PMID: 26320517
    Matched MeSH terms: Gene Expression Regulation, Neoplastic/drug effects*
  18. Jaganathan S, Ooi PT, Phang LY, Allaudin ZN, Yip LS, Choo PY, et al.
    BMC Vet Res, 2015;11:219.
    PMID: 26293577 DOI: 10.1186/s12917-015-0537-z
    Newcastle disease virus remains a constant threat in commercial poultry farms despite intensive vaccination programs. Outbreaks attributed to ND can escalate and spread across farms and states contributing to major economic loss in poultry farms.
    Matched MeSH terms: Gene Expression Regulation, Viral/physiology
  19. Lau YL, Lee WC, Xia J, Zhang G, Razali R, Anwar A, et al.
    Parasit Vectors, 2015;8:451.
    PMID: 26350613 DOI: 10.1186/s13071-015-1064-2
    Efforts to completely eradicate lymphatic filariasis from human population may be challenged by the emergence of Brugia pahangi as another zoonotic lymphatic filarial nematode. In this report, a genomic study was conducted to understand this species at molecular level.
    Matched MeSH terms: Gene Expression Regulation/physiology
  20. Tan JW, Kim MK
    Molecules, 2016 Apr 25;21(5).
    PMID: 27120593 DOI: 10.3390/molecules21050548
    Alzheimer's disease is considered one of the major neurodegenerative diseases and is characterized by the production of β-amyloid (Aβ) proteins and progressive loss of neurons. Biochanin A, a phytoestrogen compound found mainly in Trifolium pratense, was used in the present study as a potential alternative to estrogen replacement therapy via the investigation of its neuroprotective effects against Aβ25-35-induced toxicity, as well as of its potential mechanisms of action in PC12 cells. Exposure of these cells to the Aβ25-35 protein significantly increased cell viability loss and apoptosis. However, the effects induced by Aβ25-35 were markedly reversed in the present of biochanin A. Pretreatment with biochanin A attenuated the cytotoxic effect of the Aβ25-35 protein by decreasing viability loss, LDH release, and caspase activity in cells. Moreover, we found that expression of cytochrome c and Puma were reduced, alongside with the restoration of Bcl-2/Bax and Bcl-xL/Bax ratio in the presence of biochanin A, which led to a decrease in the apoptotic rate. These data demonstrate that mitochondria are involved in the protective effect of biochanin A against Aβ25-35 and that this drug attenuated Aβ25-35-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Thus, biochanin A might raise a possibility as a potential therapeutic agent for Alzheimer's disease and other related neurodegenerative diseases.
    Matched MeSH terms: Gene Expression Regulation/drug effects
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links