Displaying publications 221 - 240 of 622 in total

Abstract:
Sort:
  1. van der Ent A, Nkrumah PN, Aarts MGM, Baker AJM, Degryse F, Wawryk C, et al.
    BMC Plant Biol, 2021 Sep 27;21(1):437.
    PMID: 34579652 DOI: 10.1186/s12870-021-03190-4
    BACKGROUND: Some subspecies of Dichapetalum gelonioides are the only tropical woody zinc (Zn)-hyperaccumulator plants described so far and the first Zn hyperaccumulators identified to occur exclusively on non-Zn enriched 'normal' soils. The aim of this study was to investigate Zn cycling in the parent rock-soil-plant interface in the native habitats of hyperaccumulating Dichapetalum gelonioides subspecies (subsp. pilosum and subsp. sumatranum). We measured the Zn isotope ratios (δ66Zn) of Dichapetalum plant material, and associated soil and parent rock materials collected from Sabah (Malaysian Borneo).

    RESULTS: We found enrichment in heavy Zn isotopes in the topsoil (δ66Zn 0.13 ‰) relative to deep soil (δ66Zn -0.15 ‰) and bedrock (δ66Zn -0.90 ‰). This finding suggests that both weathering and organic matter influenced the Zn isotope pattern in the soil-plant system, with leaf litter cycling contributing significantly to enriched heavier Zn in topsoil. Within the plant, the roots were enriched in heavy Zn isotopes (δ66Zn ~ 0.60 ‰) compared to mature leaves (δ66Zn ~ 0.30 ‰), which suggests highly expressed membrane transporters in these Dichapetalum subspecies preferentially transporting lighter Zn isotopes during root-to-shoot translocation. The shoots, mature leaves and phloem tissues were enriched in heavy Zn isotopes (δ66Zn 0.34-0.70 ‰) relative to young leaves (δ66Zn 0.25 ‰). Thisindicates that phloem sources are enriched in heavy Zn isotopes relative to phloem sinks, likely because of apoplastic retention and compartmentalization in the Dichapetalum subspecies.

    CONCLUSIONS: The findings of this study reveal Zn cycling in the rock-soil-plant continuum within the natural habitat of Zn hyperaccumulating subspecies of Dichapetalum gelonioides from Malaysian Borneo. This study broadens our understanding of the role of a tropical woody Zn hyperaccumulator plant in local Zn cycling, and highlights the important role of leaf litter recycling in the topsoil Zn budget. Within the plant, phloem plays key role in Zn accumulation and redistribution during growth and development. This study provides an improved understanding of the fate and behaviour of Zn in hyperaccumulator soil-plant systems, and these insights may be applied in the biofortification of crops with Zn.

    Matched MeSH terms: Zinc Isotopes/metabolism*; Zinc Isotopes/chemistry
  2. Idrus FA, Basri MM, Rahim KAA, Rahim NSA, Chong MD
    Bull Environ Contam Toxicol, 2018 Mar;100(3):350-355.
    PMID: 29344698 DOI: 10.1007/s00128-018-2270-3
    This study analyzed the levels of cadmium (Cd), copper (Cu), and zinc (Zn) by the flame atomic absorption spectrophotometer (FAAS), in the muscle tissues, exoskeletons, and gills from freshwater prawn (Macrobrachium rosenbergii) (n = 20) harvested from natural habitat in Kerang River, Malaysia on 25th November 2015. Significant increase of the metals level in muscle tissue and gill (r > 0.70, p 
    Matched MeSH terms: Zinc/analysis*; Zinc/metabolism
  3. Vickram S, Rohini K, Srinivasan S, Nancy Veenakumari D, Archana K, Anbarasu K, et al.
    Int J Mol Sci, 2021 Feb 22;22(4).
    PMID: 33671837 DOI: 10.3390/ijms22042188
    Zinc (Zn), the second-most necessary trace element, is abundant in the human body. The human body lacks the capacity to store Zn; hence, the dietary intake of Zn is essential for various functions and metabolism. The uptake of Zn during its transport through the body is important for proper development of the three major accessory sex glands: the testis, epididymis, and prostate. It plays key roles in the initial stages of germ cell development and spermatogenesis, sperm cell development and maturation, ejaculation, liquefaction, the binding of spermatozoa and prostasomes, capacitation, and fertilization. The prostate releases more Zn into the seminal plasma during ejaculation, and it plays a significant role in sperm release and motility. During the maternal, labor, perinatal, and neonatal periods, the part of Zn is vital. The average dietary intake of Zn is in the range of 8-12 mg/day in developing countries during the maternal period. Globally, the dietary intake of Zn varies for pregnant and lactating mothers, but the average Zn intake is in the range of 9.6-11.2 mg/day. The absence of Zn and the consequences of this have been discussed using critical evidence. The events and functions of Zn related to successful fertilization have been summarized in detail. Briefly, our current review emphasizes the role of Zn at each stage of human reproduction, from the spermatogenesis process to childbirth. The role of Zn and its supplementation in in vitro fertilization (IVF) opens opportunities for future studies on reproductive biology.
    Matched MeSH terms: Zinc/pharmacology; Zinc/physiology*
  4. Saifullah B, Arulselvan P, El Zowalaty ME, Fakurazi S, Webster TJ, Geilich B, et al.
    ScientificWorldJournal, 2014;2014:401460.
    PMID: 25050392 DOI: 10.1155/2014/401460
    Tuberculosis is a lethal epidemic, difficult to control disease, claiming thousands of lives every year. We have developed a nanodelivery formulation based on para-aminosalicylic acid (PAS) and zinc layered hydroxide using zinc nitrate salt as a precursor. The developed formulation has a fourfold higher efficacy of PAS against mycobacterium tuberculosis with a minimum inhibitory concentration (MIC) found to be at 1.40 μg/mL compared to the free drug PAS with a MIC of 5.0 μg/mL. The newly developed formulation was also found active against Gram-positive bacteria, Gram-negative bacteria, and Candida albicans. The formulation was also found to be biocompatible with human normal lung cells MRC-5 and mouse fibroblast cells-3T3. The in vitro release of PAS from the formulation was found to be sustained in a human body simulated phosphate buffer saline (PBS) solution at pH values of 7.4 and 4.8. Most importantly the nanocomposite prepared using zinc nitrate salt was advantageous in terms of yield and free from toxic zinc oxide contamination and had higher biocompatibility compared to one prepared using a zinc oxide precursor. In summary, these promising in vitro results are highly encouraging for the continued investigation of para-aminosalicylic acid and zinc layered hydroxide nanocomposites in vivo and eventual preclinical studies.
    Matched MeSH terms: Zinc/chemistry*; Zinc Oxide/chemistry; Zinc Compounds/chemistry
  5. Hussein-Al-Ali SH, Al-Qubaisi M, Hussein MZ, Ismail M, Zainal Z, Hakim MN
    Int J Mol Sci, 2012;13(5):5899-916.
    PMID: 22754339 DOI: 10.3390/ijms13055899
    The intercalation of cetirizine into two types of layered double hydroxides, Zn/Al and Mg/Al, has been investigated by the ion exchange method to form CTZAN and CTMAN nanocomposites, respectively. The basal spacing of the nanocomposites were expanded to 31.9 Å for CTZAN and 31.2 Å for CTMAN, suggesting that cetirizine anion was intercalated into Layered double hydroxides (LDHs) and arranged in a tilted bilayer fashion. A Fourier transform infrared spectroscopy (FTIR) study supported the formation of both the nanocomposites, and the intercalated cetirizine is thermally more stable than its counterpart in free state. The loading of cetirizine in the nanocomposite was estimated to be about 57.2% for CTZAN and 60.7% CTMAN. The cetirizine release from the nanocomposites show sustained release manner and the release rate of cetirizine from CTZAN and CTMAN nanocomposites at pH 7.4 is remarkably lower than that at pH 4.8, presumably due to the different release mechanism. The inhibition of histamine release from RBL2H3 cells by the free cetirizine is higher than the intercalated cetirizine both in CTZAN and CTMAN nanocomposites. The viability in human Chang liver cells at 1000 μg/mL for CTZAN and CTMAN nanocomposites are 74.5 and 91.9%, respectively.
    Matched MeSH terms: Zinc/pharmacology; Zinc/chemistry*
  6. Yap CK, Noorhaidah A, Azlan A, Nor Azwady AA, Ismail A, Ismail AR, et al.
    Ecotoxicol Environ Saf, 2009 Feb;72(2):496-506.
    PMID: 18243309 DOI: 10.1016/j.ecoenv.2007.12.005
    The distributions of Cu, Zn, and Pb concentrations in the selected soft tissues (foot, cephalic tentacle, mantle, muscle, gill, digestive caecum, and remaining soft tissues) and shells of the mud-flat snail Telescopium telescopium were determined in snails from eight geographical sites in the south-western intertidal area of Peninsular Malaysia. Generally, the digestive caecum compared with other selected soft tissues, accumulated higher concentration of Zn (214.35+/-14.56 microg/g dry weight), indicating that the digestive caecum has higher affinity for the essential Zn to bind to metallothionein. The shell demonstrated higher concentrations of Pb (41.23+/-1.20 microg/g dry weight) when compared to the selected soft tissues except gill from Kuala Sg. Ayam (95.76+/-5.32 microg/g dry weight). The use of different soft tissues also can solve the problem of defecation to reduce error in interpreting the bioavailability of heavy metals in the intertidal area.
    Matched MeSH terms: Zinc/pharmacokinetics; Zinc/toxicity*
  7. Chew LT, Bradley DA, Mohd AY, Jamil MM
    Appl Radiat Isot, 2000 9 26;53(4-5):633-8.
    PMID: 11003500
    Inductively Coupled Argon Plasma Atomic Emission Spectroscopy (ICP-AES) has been used to determine Pb, Zn and Cu levels in 47 exfoliated human teeth (all of which required extraction for orthodontic reasons). Lead concentrations for the group were 1.7 microg (g tooth mass)(-1) to 40.5 microg (g tooth mass)(-1). with a median of 9.8 microg (g tooth mass)(-1). A median lead level in excess of the group value was found for the teeth of six lorry drivers who were included in the study. A more significant enhancement was found for the seven subjects whose age was in excess of 60 years. The median values for Zn and Cu were 123.0 and 0.6 microg (g tooth mass)(-1) respectively. Present values for tooth-Zn are lower than published data for other ethnic groups.
    Matched MeSH terms: Zinc/analysis; Zinc/metabolism
  8. Chang JS, Strunk J, Chong MN, Poh PE, Ocon JD
    J Hazard Mater, 2020 01 05;381:120958.
    PMID: 31416043 DOI: 10.1016/j.jhazmat.2019.120958
    While bulk zinc oxide (ZnO) is of non-toxic in nature, ZnO nanoarchitectures could potentially induce the macroscopic characteristics of oxidative, lethality and toxicity in the water environment. Here we report a systematic study through state-of-the-art controllable synthesis of multi-dimensional ZnO nanoarchitectures (i.e. 0D-nanoparticle, 1D-nanorod, 2D-nanosheet, and 3D-nanoflowers), and subsequent in-depth understanding on the fundamental factor that determines their photoactivities. The photoactivities of resultant ZnO nanoarchitectures were interpreted in terms of the photodegradation of salicylic acid as well as inactivation of Bacillus subtilis and Escherichia coli under UV-A irradiation. Photodegradation results showed that 1D-ZnO nanorods demonstrated the highest salicylic acid photodegradation efficiency (99.4%) with a rate constant of 0.0364 min-1. 1D-ZnO nanorods also exhibited the highest log reductions of B. subtilis and E. coli of 3.5 and 4.2, respectively. Through physicochemical properties standardisation, an intermittent higher k value for pore diameter (0.00097 min-1 per mm), the highest k values for crystallite size (0.00171 min-1 per nm) and specific surface area (0.00339 min-1 per m2/g) contributed to the exceptional photodegradation performance of nanorods. Whereas, the average normalised log reduction against the physicochemical properties of nanorods (i.e. low crystallite size, high specific surface area and pore diameter) caused the strongest bactericidal effect.
    Matched MeSH terms: Zinc Oxide/radiation effects*; Zinc Oxide/chemistry*
  9. Ikram M, Mahmood A, Haider A, Naz S, Ul-Hamid A, Nabgan W, et al.
    Int J Biol Macromol, 2021 Aug 31;185:153-164.
    PMID: 34157328 DOI: 10.1016/j.ijbiomac.2021.06.101
    Various concentrations of Mg into fixed amount of cellulose nanocrystals (CNC)-doped ZnO were synthesized using facile chemical precipitation. The aim of present study is to remove dye degradation of methylene blue (MB) and bactericidal behavior with synthesized product. Phase constitution, functional group analysis, optical behavior, elemental composition, morphology and microstructure were examined using XRD, FTIR, UV-Vis spectrophotometer, EDS and HR-TEM. Highly efficient photocatalytic performance was observed in basic medium (98%) relative to neutral (65%), and acidic (83%) was observed upon Mg and CNC co-doping. Significant bactericidal activity of doped ZnO nanoparticles depicted inhibition zones for G -ve and +ve bacteria ranging (2.20 - 4.25 mm) and (5.80-7.25 mm) for E. coli and (1.05 - 2.75 mm) and (2.80 - 4.75 mm) for S. aureus at low and high doses, respectively. Overall, doped nanostructures showed significant (P 
    Matched MeSH terms: Zinc Oxide/pharmacology*; Zinc Oxide/chemistry
  10. Yap CK, Ismail A, Tan SG
    Environ Int, 2003 Jul;29(4):521-8.
    PMID: 12705949
    Concentrations of cadmium (Cd), lead (Pb) and zinc (Zn) in total soft tissues (ST) and byssus (BYS) of the green-lipped mussel Perna viridis from 11 different geographical locations off the west coast of Peninsular Malaysia were determined. The metal concentrations distributed between the BYS and ST were compared. The results of this study indicated that higher levels of Cd (1.31 microg/g), Pb (38.49 microg/g) and Zn (206.52 microg/g) were accumulated in the BYS than in the total ST (Cd: 0.29 microg/g; Pb: 8.27 microg/g; Zn: 102.6 microg/g). Semi-static and short period controlled laboratory experiments were also conducted for the accumulation and depuration of Cd, Pb and Zn in the total ST and BYS of P. viridis. The ratios (BYS/ST) for Pb and Cd from the laboratory experiments showed that the total ST accumulated more metals than the BYS. Therefore, these laboratory results disagreed with those found for the field samples. However, the laboratory results for the Zn ratio (BYS/ST) agreed with those of the field samples. It was evident that when compared to the ST, the BYS was a more sensitive biomonitoring organ for Zn while it could be a complementary organ for Cd and Pb in the total ST. Since total ST of P. viridis had been reported to have regulative mechanism for Zn, its BYS can be used as a biomonitoring organ for the identification of coastal areas exposed to Zn pollution.
    Matched MeSH terms: Zinc/analysis*; Zinc/pharmacokinetics
  11. Yap CK, Ismail A, Tan SG, Omar H
    Environ Int, 2002 Apr;28(1-2):117-26.
    PMID: 12046948
    Total concentrations and speciation of cadmium (Cd), copper (Cu), lead (Pb) and zinc (Zn) in surface sediment samples were correlated with the respective metal measured in the total soft tissue of the green-lipped mussel Perna viridis, collected from water off the west coast of Peninsular Malaysia. The aim of this study is to relate the possible differences in the accumulation patterns of the heavy metals in P. viridis to those in the surface sediment. The sequential extraction technique was employed to fractionate the sediment into 'freely leachable and exchangeable' (EFLE), 'acid-reducible,' 'oxidisable-organic' and 'resistant' fractions. The results showed that significant (P .05) was found between Zn in P viridis and all the sediment geochemical fractions of Zn and total Zn in the sediment. This indicated that Zn was possibly regulated from the soft tissue of P. viridis. The present results supported the use of P viridis as a suitable biomonitoring agent for Cd, Cu and Pb.
    Matched MeSH terms: Zinc/analysis; Zinc/pharmacokinetics
  12. Lee HH, Loh SP, Bong CF, Sarbini SR, Yiu PH
    J Food Sci Technol, 2015 Dec;52(12):7806-16.
    PMID: 26604353 DOI: 10.1007/s13197-015-1918-9
    Whole grains consumption promotes health benefits, but demonstrates controversial impacts from phytic acid in meeting requirements of good health. Therefore, this study was aimed to determine the nutrient bioaccessibility and antioxidant properties of rice cultivars named "Adan" or "Bario" and deduce the nutritional impact of phytic acid. Majority of the dehusked rice in the collection showed an acceptable level of in-vitro starch digestibility and in-vitro protein digestibility, but were poor in antioxidant properties and bioaccessibility of minerals (Ca, Fe and Zn). The drawbacks identified in the rice cultivars were due to relatively high phytic acid content (2420.6 ± 94.6 mg/100 g) and low phenolic content (152.39 ± 18.84 μg GAE/g). The relationship between phytic acid content and mineral bioaccessibility was strongest in calcium (r = 0.60), followed by iron (r = 0.40) and zinc (r = 0.27). Phytic acid content did not significantly correlate with in-vitro starch digestibility and in-vitro protein digestibility but showed a weak relationship with antioxidant properties. These suggest that phytic acid could significantly impair the mineral bioaccessibility of dehusked rice, and also act as an important antioxidant in non-pigmented rice. Bario rice cultivars offered dehusked rice with wide range of in-vitro digestibility of starch and protein, and also pigmented rice as a good source of antioxidants. However, there is a need to reduce phytic acid content in dehusked rice for improved mineral bioaccessibility among Bario rice cultivars.
    Matched MeSH terms: Zinc
  13. Dee CF, Chong SK, Rahman SA, Omar FS, Huang NM, Majlis BY, et al.
    Nanoscale Res Lett, 2014;9(1):469.
    PMID: 25246872 DOI: 10.1186/1556-276X-9-469
    Hierarchical Si/ZnO trunk-branch nanostructures (NSs) have been synthesized by hot wire assisted chemical vapor deposition method for trunk Si nanowires (NWs) on indium tin oxide (ITO) substrate and followed by the vapor transport condensation (VTC) method for zinc oxide (ZnO) nanorods (NRs) which was laterally grown from each Si nanowires (NWs). A spin coating method has been used for zinc oxide (ZnO) seeding. This method is better compared with other group where they used sputtering method for the same process. The sputtering method only results in the growth of ZnO NRs on top of the Si trunk. Our method shows improvement by having the growth evenly distributed on the lateral sides and caps of the Si trunks, resulting in pine-leave-like NSs. Field emission scanning electron microscope image shows the hierarchical nanostructures resembling the shape of the leaves of pine trees. Single crystalline structure for the ZnO branch grown laterally from the crystalline Si trunk has been identified by using a lattice-resolved transmission electron microscope. A preliminary photoelectrochemical (PEC) cell testing has been setup to characterize the photocurrent of sole array of ZnO NR growth by both hydrothermal-grown (HTG) method and VTC method on ITO substrates. VTC-grown ZnO NRs showed greater photocurrent effect due to its better structural properties. The measured photocurrent was also compared with the array of hierarchical Si/ZnO trunk-branch NSs. The cell with the array of Si/ZnO trunk-branch NSs revealed four-fold magnitude enhancement in photocurrent density compared with the sole array of ZnO NRs obtain from VTC processes.
    Matched MeSH terms: Zinc Oxide
  14. Kura AU, Ain NM, Hussein MZ, Fakurazi S, Hussein-Al-Ali SH
    Int J Mol Sci, 2014;15(4):5916-27.
    PMID: 24722565 DOI: 10.3390/ijms15045916
    Layered hydroxide nanoparticles are generally biocompatible, and less toxic than most inorganic nanoparticles, making them an acceptable alternative drug delivery system. Due to growing concern over animal welfare and the expense of in vivo experiments both the public and the government are interested to find alternatives to animal testing. The toxicity potential of zinc aluminum layered hydroxide (ZAL) nanocomposite containing anti-Parkinsonian agent may be determined using a PC 12 cell model. ZAL nanocomposite demonstrated a decreased cytotoxic effect when compared to levodopa on PC12 cells with more than 80% cell viability at 100 µg/mL compared to less than 20% cell viability in a direct levodopa exposure. Neither levodopa-loaded nanocomposite nor the un-intercalated nanocomposite disturbed the cytoskeletal structure of the neurogenic cells at their IC50 concentration. Levodopa metabolite (HVA) released from the nanocomposite demonstrated the slow sustained and controlled release character of layered hydroxide nanoparticles unlike the burst uptake and release system shown with pure levodopa treatment.
    Matched MeSH terms: Zinc/adverse effects; Zinc/pharmacology*; Zinc/chemistry
  15. Basar N, Donnelly S, Sirat HM, Thomas EJ
    Org Biomol Chem, 2013 Dec 28;11(48):8476-505.
    PMID: 24212203 DOI: 10.1039/c3ob41931b
    Reactions of 5-benzyloxy-4-methylpent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were usefully stereoselective in favour of the (E)-1,5-anti-6-benzyloxy-5-methylalk-3-en-1-ols. Similar stereoselectivity was observed for reactions of analogous 5-benzyloxy-4-methylpent-2-enyl bromides with aldehydes when promoted by a low valency bismuth species prepared by reduction of bismuth(III) triiodide with powdered zinc so providing a "tin-free" procedure. The analogous reactions of 4-benzyloxypent-2-enyl(tributyl)stannane with aldehydes promoted by bismuth(III) iodide were also stereoselective but gave lower yields. Attempted 1,6-stereocontrol using these reactions resulted in only modest stereoselectivities. Aspects of the chemistry of the products were studied in particular their stereoselective conversion into aliphatic compounds with methyl bearing stereogenic centres at 1,5,9,13- and 1,3,5-positions along the aliphatic chain. Mechanistically, allylic organobismuth species may be involved in both sets of reactions but this was not confirmed although the similar stereoselectivities observed for both the bismuth(III) iodide mediated reactions of the pent-2-enylstannanes and the low-valency bismuth promoted reactions of the pent-2-enyl bromides are consistent with participation of similar intermediates.
    Matched MeSH terms: Zinc
  16. Chong SK, Dee CF, Abdul Rahman S
    Nanoscale Res Lett, 2013;8(1):174.
    PMID: 23590803 DOI: 10.1186/1556-276X-8-174
    Silicon/zinc oxide (Si/ZnO) core-shell nanowires (NWs) were prepared on a p-type Si(111) substrate using a two-step growth process. First, indium seed-coated Si NWs (In/Si NWs) were synthesized using a plasma-assisted hot-wire chemical vapor deposition technique. This was then followed by the growth of a ZnO nanostructure shell layer using a vapor transport and condensation method. By varying the ZnO growth time from 0.5 to 2 h, different morphologies of ZnO nanostructures, such as ZnO nanoparticles, ZnO shell layer, and ZnO nanorods were grown on the In/Si NWs. The In seeds were believed to act as centers to attract the ZnO molecule vapors, further inducing the lateral growth of ZnO nanorods from the Si/ZnO core-shell NWs via a vapor-liquid-solid mechanism. The ZnO nanorods had a tendency to grow in the direction of [0001] as indicated by X-ray diffraction and high resolution transmission electron microscopy analyses. We showed that the Si/ZnO core-shell NWs exhibit a broad visible emission ranging from 400 to 750 nm due to the combination of emissions from oxygen vacancies in ZnO and In2O3 structures and nanocrystallite Si on the Si NWs. The hierarchical growth of straight ZnO nanorods on the core-shell NWs eventually reduced the defect (green) emission and enhanced the near band edge (ultraviolet) emission of the ZnO.
    Matched MeSH terms: Zinc Oxide
  17. Ahmad M, Hamzah H, Sufliza Marsom E
    Talanta, 1998 Oct;47(2):275-83.
    PMID: 18967326
    An optical sensor for Hg(II) monitoring using a complex of zinc dithizonate immobilised on XAD 7 which is based on reflectance spectrophotometry has been developed in this study. Measurements were made using a kinetic approach whereby the reflectance signal is measured at a fixed time of 5 min. The sensor could be regenerated using a saturated solution of KCl in 1 M sulphuric acid. The sensor was found to have an optimum response at pH 3.0 with respective measurement repeatability and probe-to-probe reproducibility of 1.53% and 5.26%. A linear response was observed in the Hg(II) concentration range of 0.0-180.0 ppm with a calculated limit of detection (LOD) of 0.05 ppm. The results obtained for aqueous Hg(II) determination using this probe were found to be comparable with the well-established method of atomic absorption spectrometry.
    Matched MeSH terms: Zinc
  18. Radzun KA, Wolf J, Jakob G, Zhang E, Stephens E, Ross I, et al.
    PMID: 25984234 DOI: 10.1186/s13068-015-0238-7
    BACKGROUND: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels.

    RESULTS: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture.

    CONCLUSION: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production.

    Matched MeSH terms: Zinc
  19. Ismail A
    Environ Monit Assess, 1994 Sep;32(3):187-91.
    PMID: 24214132 DOI: 10.1007/BF00546274
    A study of heavy metal contents in freshwater snails from rice fields have been made. The results indicate that the levels of heavy metals, Pb, Cu, Zn and Cd, are low and within the permissible limit of Malaysian Food Regulations. The results can serve as background data for further reference.
    Matched MeSH terms: Zinc
  20. Alkarkhi AFM, Amr SSA, Alqaraghuli WAA, Özdemir Y, Zulkifli M, Mahmud MN
    Data Brief, 2021 Feb;34:106685.
    PMID: 33409347 DOI: 10.1016/j.dib.2020.106685
    This article provides data regarding the performance of zinc sulphate as a coagulant for treating rubber industry wastewater. The effect of four factors on removal efficiency of nine parameters is investigated, namely: pH, mixing speed, dosage of coagulant (zinc sulphate) and retention time. Response surface methodology was used to investigate the effect of selected variables. The data obtained from face centered composite design (FCCD) were analyzed by using analysis of variance (ANOVA) and regression model to find the optimum operating conditions for the selected factors.
    Matched MeSH terms: Zinc Sulfate
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links