In this study, natural Hydroxyapatite (HA) was extracted from clean cow bone by treatment with NaOH and heating at high temperature before ground into fine powder. The HA powder were than mixed together with binder for several hours. Dense HA were formed in die steel mould by using uniaxially pressing method. Sample was sintered at different temperature 1150, 1200, 1250 and 1300°C for several hours. The phases of specimen were identified using X-ray diffraction (XRD). The mechanical properties were analyzed using three-point bending testing and the microstructure was observed by scanning electron microscopy. From XRD results, natural HA shows phase of pure HA up to 1250 o C and fracture strength results indicated that the mechanical properties of specimen increase as temperature increase. From microstructure observation using SEM, HA specimen shows initial stages of sintering process at temperature 1150°C and show changes in microstructure evolution as temperature increase up to 1300°C.
Thin films of cerium oxide (CeO2) were prepared on silicon (Si) substrate by metal organic decomposition route. 0.25 M of cerium (III) acetylacetonate (acac) was used as starting materials with the addition of methanol and acetic acid as solvents. Oxide conversion of the film by thermal treatment was conducted at temperature ranging from 400 o C to 1000 o C for 15 min in argon ambient. X-ray diffraction (XRD) analysis utilizing Cukα radiation (Model Brukker’s Diffrac Plus ), Filmetrics system measurement, field emission scanning electron microscope (FE-SEM) (Model Zeiss Supra 35VP FE-SEM) and atomic force microscopy (AFM) (Model SII Nanonavi) were employed to characterize the phase formed and morphologies of the film produced.
One-dimensional nanostructure materials are very attractive because of their electronic and optical properties depending on their size. It is well known that properties of material can be tuned by reducing size to nanoscale because at the small sizes, that they behave differently with its bulk materials and the band gap will control by the size. The tunability of the band gap makes nanostructured materials useful for many applications. As one of the wide band gaps semiconductor compounds, zinc selenide (ZnSe) nanostructures (nanoparticles, nanowires, nanorods) have received much attention for the application in optoelectronic devices, such as blue laser diode, light emitting diodes, solar cells and IR optical windows. In this study, ZnSe nanostructures have been synthesized by reduction process of zinc selenate using hydrazine hydrate (N2H4.2H2O). The reductive agent of hydrazine hydrate was added to the starting materials of zinc selenate were heat treated at 500 o C for 1 hour under argon flow to form onedimensional nanostructures. The SEM and TEM images show the formation of nanocompositelike structures, which some small nanobars and nanopellets stick to the rod. The x-ray diffraction and elemental composition analysis confirm the formation of mixture zinc oxide and zinc selenide phases.
In these studies, cordierite was mechanically synthesized after a sol-gel process. The effect of milling time of cordierite was investigated. Aluminium nitrate nonahydrate, magnesium nitrate hexahydrate and tetraethylorthosilicate (TEOS) were used as starting materials. Gels obtained were mechanically activated in planetary ball mill by at 300rpm grinding speed and grinding time (15min, 30min, 45min and 60min). Powders produced were characterized by X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscope (FESEM) and Energy Dispersive X-Ray (EDX). XRD analysis proved that α-cordierite was formed at lower temperature (1200°C) as compliment to without grinding, whereby it is formed at1300°C. FESEM analysis shows the size of the cordierite were in submicron scale. EDX analysis proved that magnesium, aluminium, silicon and oxygen are elements existed in cordierite.
In this study, we evaluated and characterized microbial cellulose produced from Kombucha after eighth day of fermentation by employing SEM, FTIR, X-ray diffractometry, adsorption isotherm, and by measuring the swelling properties. Results on SEM revealed microbial cellulose layer to be composed of a compact cellulose ultrafine network like structure. FTIR spectra showed the presence of a characteristic region of anomeric carbons (960 – 730 cm-1), wherein a band at 891.59 cm-1 confirmed the presence of β, 1-4 linkages. Results of FTIR spectra also showed microbial cellulose to be free from contaminants such as lignin or hemicellulose, which are often present in plant cellulose. X-ray diffraction studies exhibited the overall degree of crystallinity index for MCC to be slightly lower than that of microbial cellulose. Results on swelling properties indicated microbial cellulose to possess higher fiber liquid retention values (10-160%) compared to commercial MCC (5-70%). The adsorption isotherm curves showed similarities between microbial cellulose with that of pure crystalline substance. Overall, results obtained in this study were comparable with the commercial microcrystalline cellulose, indicating that the process developed by us can be explored industrially on a pilot scale.
In this study, chitosan/polyvinyl alcohol (PVA)/zeolite nanofibrous composite membrane was fabricated via electrospinning. First, crude chitosan was hydrolyzed with NaOH for 24h. Afterward, hydrolyzed chitosan solution was blended with aqueous PVA solution in different weight ratios. Morphological analysis of chitosan/PVA electrospun nanofiber showed a defect-free nanofiber material with 50:50 weight ratio of chitosan/PVA. Subsequently, 1wt.% of zeolite was added to this blended solution of 50:50 chitosan/PVA. The resulting nanofiber was characterized with field emission scanning electron microscopy, X-Ray diffraction, Fourier transform infrared spectroscopy, swelling test, and adsorption test. Fine, bead-free nanofiber with homogeneous nanofiber was electrospun. The resulting membrane was stable in distilled water, acidic, and basic media in 20 days. Moreover, the adsorption ability of nanofibrous membrane was studied over Cr (VI), Fe (III), and Ni (II) ions using Langmuir isotherm. Kinetic parameters were estimated using the Lagergren first-order, pseudo-second-order, and intraparticle diffusion kinetic models. Kinetic study showed that adsorption rate was high. However, the resulting nanofiber membrane showed less adsorption capacity at high concentration. The adsorption capacity of nanofiber was unaltered after five recycling runs, which indicated the reusability of chitosan/PVA/zeolite nanofibrous membrane. Therefore, chitosan/PVA/zeolite nanofiber can be a useful material for water treatment at moderate concentration of heavy metals.
Many attempts have been focused in the past on preparing of synthetic E-tricalcium (E-TCP), which being employed as bone substitute due to its biocompatibility and resorbability. Low temperature synthesize such as sol-gel method become popular due to the high product purity and homogenous composition. Sol-gel method is less economical towards commercialization because the cost of raw materials and the yield of the product that can be achieved. This paper describes the synthesis of ETCP via mixing of CaCO3 and H3PO4 followed by calcinations process at 750qC – 1050qC. X-ray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimeter (DSC), fourier transformation infra-red (FTIR) were used for characterization and evaluation of the phase composition, morphology, particle size and thermal behavior of the product. E-TCP phase start to occur after calcinations at 750qC.
Changes in molecular structure configuration during strain induced crystallisation of an amorphous Poly(Lactic Acid) (PLA 4032D) polymer was monitored in-situ by simultaneously recording the wide angle x-ray scattering (WAXS) and small angle x-ray scattering (SAXS) patterns together with polymer deformation images and force data. The amorphous chain orientation from the beginning of deformation until the onset of crystallisation was studied from the WAXS patterns. The true mechanical behaviour described by the true stress-true strain curve related to an amorphous chain orientation exhibited a linear behaviour. Approaching critical amorphous orientation, the true stress-true strain curve deviated from linear into non-linear behaviour. After the onset of crystallization, when the deformed polymer became a semicrystalline state, the true mechanical behaviour exhibited true strain hardening which greatly affected by the formation of the morphology. The gradual true strain hardening was associated with the formation of micro-fibrillar structure containing thin crystallite morphology whilst sharp increased in true strain hardening was associated with the formation of stacked lamellar morphology in the form of macro-lattice structure. The study was accomplished by the application of high brilliance synchrotron radiation at beamline ID2 of ESRF, Grenoble in France and the usage of the high contrast resolution of WAXS and SAXS charge-couple device (CCD) camera as well as 40 milliseconds temporal resolution of data acquisition system.
exhibits extensive first pass metabolism with poor oral bioavailability (27%–50%) limiting its therapeutic efficiency. The present study involved an attempt to enhance its aqueous solubility by formulating as solid dispersions (SDs) using sodium starch glycollate (SSG) as a carrier. The dispersions were formulated by dispersion method and evaluated by phase solubility, drug content, in vitro release and mathematical modelling. Solid state characterisation of samples was carried out by X-ray diffraction (XRD), differential scanning calorimetric (DSC), Fourier transform infrared spectrophotometry (FTIR), near infrared (NIR), Raman analysis and wettability studies. The phase solubility and thermodynamic parameters indicated the spontaneity and solubilisation effect of carrier. The release rate from the dispersions was higher than pure drug and found to increase with an increase in carrier content. The optimised dispersions were selected based on release studies, profiles and dissolution parameters. XRD, DSC, FTIR, NIR and Raman analysis proved the crystallinity reduction, changes in crystal quality and compatibility between drug and carriers. Wettability studies proved the increased wettability in selected dispersions. Based on the findings, possible mechanisms that would have contributed to dissolution enhancement of CLZ were suggested. Such findings could be extrapolated to enhance the aqueous solubility of other poorly water-soluble drugs.
Co(II)-Ti(IV)-substituted magnetoplumbite-type (M-type) barium ferrite nanoparticles were synthesized via the sol-gel technique employing ethylene glycol as the gel precursor. Structural and magnetic properties were characterised via X-ray diffraction (XRD), high resolution transmission electron microscopy and superconducting quantum interference device magnetometry. The particle sizes of the M-type BaCoXTiXFe12-2XO19 (0.2 ≤ ≤ 1.0) were found to be 900 Å – 1500 Å. The XRD results confirmed that the Co(II)-Ti(IV) substituted ferrites in the range of 0.2 ≤ ≤ 1.0 substitution had the M-type ferrite as the dominant phase. The hysteresis loss per-cycle decreased with increasing Co(II)-Ti(IV) substitution in M-type ferrites which showed reduced values in coercivity and remnant magnetisation with moderate effect on the saturation magnetisation.
Barium strontium titanate (Ba0.7Sr0.3TiO3) powder was processed at temperature 80 o C by reacting titania sol in aqueous solutions that contained BaCl2, SrCl2 and NaOH at atmospheric pressure.
The structural characteristic of the powder and sintered pellet were studied using Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) whereas the electrical characteristic was determined via Impedance Spectroscopy (IS) and LCR meter. The synthesized powder was found to have a tetragonal phase after heating at 1300 o C. XRD pattern also showed the presence of secondary phase BaTi2O5 (BT2). The SEM results shows the fine grain size was in the range of 0.2 Pm to 0.4 Pm whereas the large ones are approximately 0.8 Pm to 1.2 Pm The ac response of sample sintered at 1300 o C indicated that three electrically different regions. Element 1 can be assigned as a ferroelectric grain boundary region and it is actually BT2, element 2 as a ferroelectric bulk region and the third element is a conductive core which has a low resistance (200 :) and capacitance value.
P-type transparent conductive oxide of copper aluminum oxide (CuAlO2) thin films were prepared by using sol-gel method with nitrate solutions as starting precursor. Copper nitrate and aluminum nitrate were selected as raw materials that provide the copper and aluminum source. The CuAlO2 thin films were deposited on pre-cleaned silicon substrate by spin-coating technique. To study of phase formation of CuAlO2, as prepared sample was dried and subjected to heat treatment at various temperatures. The heat-treated samples were characterized by x-ray diffraction (XRD) and energy dispersive x-ray (EDX). From XRD analysis result found that CuAlO2 phase was formed after annealing at 1100 o C for 4 hrs. EDX result of annealed sample at 1100 o C shows composition of Cu and Al that indicate the possibility of forming CuAlO2.
Small-angle X-ray scattering (SAXS) was used to investigate the nanostructure of the microfibrils of cell wall in Acacia Mangium wood. Parameters, such as the fibre length (L), surface area of the single fibre (S), the correspondence distance from the center of the fibre to the center of its neighbor and the shape of the fibre were determined as a function to the distance from pith towards the bark. The results indicate that the fibre length ranged from 53.44 nm to 13.72 nm from pith to bark. Surface area of the single fibre varied from 0.65 nm 2 to 4.36 nm 2 , the highest being found at the end of bark region. The mean value of the correspondence distance is 13.95 nm. Surface structure analysis from scattering graph showed a rod shape of fibre in the pith region of Acacia Mangium wood. The use of SAXS technique and scanning electron microscope (SEM) micrographs gives the most reliable dimensions values.
Layered double hydroxide (LDH) with Mg/Al molar ratio of 4/1 (MAN-4) was synthesized by co-precipitation and followed by hydrothermal method. The compound was allowed to undergo ion exchange with K2HPO4 for 48 hours to produce MgAlHPO4 (MAHP-4). The solid produced was characterized using X-ray diffraction (XRD) and Fourier Transform Infrared spectroscopy (FTIR). Adsorption of copper solution by MAHP-4 was carried out using batch experiment by mixing the copper solution and the sorbent MAHP-4. The effects of
various parameters such as contact time, pH, adsorbent dosage and initial concentration were investigated. The optimum pH for copper removal was found to be 4 and the optimum time of copper removal was found at 4 hours. The isotherm data was analysed using model isotherm Langmuir with the correlation coefficient of 0.999 was recorded. The maximum adsorption capacity, Qo (mg/g) of 142.8 mg/g was also recorded from the Langmuir isotherm. The remaining copper solution was determined by using EDXRF (Energy Dispersive XRay Fluorescence spectrometry) model MiniPal 4 (PAN analytical). The results in this study indicate that MAHP-4 has potential as an effective adsorbent for removing copper from aqueous solution.
Template-assisted growth is an important nanoelectrochemical deposition technique for synthesizing one-dimensional (1-D) nanostructures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodisation of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nanostructures in the form of nanowires using PAA templates as scaffolds. Axial heterostructured and homogeneous nanowires formed by engineering materials configuration via composition and/or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to elucidate the microstructures, morphologies and chemical compositions of the nanowires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nanostructures have useful applications as critical components in nanosensor devices and various areas of nanotechnology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals.
Polyaniline (PANI) and polyaniline composites with aluminium oxide (Al2O3) were prepared using the in situ polymerization method. The composites were then blended with acrylic paint and applied to carbon steel panels. The coated steel panels were evaluated for corrosion using the immersion test technique. The results revealed that the steel panels coated with polyaniline composites and with Al2O3 containing coatings had small corrosion as compared to the bare sample and the samples coated with polyaniline and paint alone. The samples were characterized by Fourier transform infrared (FTIR) and X-ray diffraction(XRD). In addition, the morphology of the finished samples was observed using the scanning electron microscopy (SEM). This novel composite was used as a paint pigment for enhancing the barrier properties and the paint protectable against aggressive ions. Meanwhile, corrosion was evaluated through visual monitoring using a digital camera after 60 days of fully immersion test in 5% NaCl. The weight loss method was also used to evaluate corrosion.
In this study polymer electrolytes composed of poly(methyl methacrylate) (PMMA) as a host polymer and ethylene carbonate (EC) as a plasticizer complexed with different lithium salts, i.e. lithium tetrafluoroborate (LiBF4) and lithium triflate (LiCF3SO3) were prepared by the solution casting technique. The conductivities of the films were characterized by impedance spectroscopy. At room temperature, the highest conductivities were 4.07 × 10–7S cm–1 and 3.40 × 10–5 S cm–1 achieved, respectively from the films containing 30 wt% LiBF4 in the PMMA-EC-LiBF4 system and 35 wt% LiCF3SO3 in the PMMA-EC-LiCF3SO3 system. The conductivity-temperature dependence of the films seemed to obey the Arrhenius equation in which the ion transport in these materials was thermally assisted. Scanning electron microscopy analysis showed that the surface of PMMA-EC-LiCF3SO3 film was smooth and homogeneous, hence lithium ions could traverse through the PMMA-EC-LiCF3SO3 film more easily compared to the PMMA-EC-LiBF4 film. X-Ray diffraction studies revealed that complexation had occurred and the complexes formed were amorphous.
In this work, 10 mol% yttrium-doped ceria powders, Ce0.9Y0.1O1.95, were synthesised using a new mechanical technique, mechanochemical reaction, in which both impact action and shearing forces were applied for efficient fine grinding, subsequently leading to higher homogeneity of the resultant powders. Ce0.9Y0.1O1.95 prepared using this new technique was systematically compared with a sample of the same prepared using conventional solid-state methodology. X-ray diffraction analysis showed all prepared samples were single phase with a cubic fluorite structure. Generally, Y2O3-doped CeO2 electrolytes prepared by mechanochemical reactions were stable at a lower temperature (1100 °C) compared with a sample of the same synthesised using the conventional solid-state method. Characterisations using differential thermal analysis (DTA) and thermogravimetric analysis (TGA) showed no thermal changes and phase transitions, indicating all materials were thermally stable. The electrical properties of the samples investigated by AC impedance spectroscopy in the temperature range 200–800 ˚C are presented and discussed. Scanning electron microscopy (SEM) was used to study the morphology of the materials. Fine-grained powders with uniform grain-size distribution were obtained from the mechanochemical reaction.
Indialite or α-cordierite was synthesized by glass crystallization method using mainly talc and kaolin and with small amount of MgO, Al2O3, SiO2 to compensate the chemical formulation of non-stoihiometric compositions of cordierite. (3MgO.1.5Al2O3.5SiO2). B2O3, P2O5 and CaO was also added to decrease the melting and sintering temperature of cordierite. The glasses were pelletized and sintered from 850 o C up to 1050 o C. Phase compositions of both heat treated glass was quantified by X-ray powder diffraction data by the Rietveld method using TOPAS Ver 3 software. Result shows that about 60wt% of α cordierite has successfully crystallized at 850 o C. Beside secondary phases (forsterite) which come from initial raw materials, phases from grinding media were also presents in the sample. The contamination was considered high since it has reacted with existence phases to form a new phase at higher temperature. Without any contamination from grinding it was expected to obtain more than 90wt% α cordierite using the same composition.
Austempering is one of the trendiest heat treatment processes to promote the strength and toughness of ductile iron. However, such practice is complex because it involves using aqueous solutions as quenchant (salt bath solution). This study was conducted to analyse the heat treatment of the combination processes of annealing-austenitising and evaluate the correlation between microstructure constituent and hardness of the ductile iron. Ductile iron samples in form of double cylinder was produced by conventional CO2 sand casting method. The new heat treatment process was started by annealed at 873 K for 1.8 ks before being oil quenched. Subsequently, the samples were austenitised at austenitising temperatures 1123 K, 1173 K and 1223 K for 3.6 ks respectively before being immediately oil quenched to room temperature. A series of microstructure analysis tests, including optical microscopy and X-ray diffraction (XRD) was applied. Vickers microhardness tester was used to measure the hardness for each microstructure constituent. The results showed that ductile iron matrix transforms to martensitic during heat treatment of annealing-austenitising combination processes, which in turn contributes to increasing microhardness of martensite and the bulk hardness of ductile iron.