Displaying publications 221 - 240 of 318 in total

Abstract:
Sort:
  1. Granados A, Brodie JF, Bernard H, O'Brien MJ
    Ecol Appl, 2017 10;27(7):2092-2101.
    PMID: 28660670 DOI: 10.1002/eap.1592
    Vertebrate granivores destroy plant seeds, but whether animal-induced seed mortality alters plant recruitment varies with habitat context, seed traits, and among granivore species. An incomplete understanding of seed predation makes it difficult to predict how widespread extirpations of vertebrate granivores in tropical forests might affect tree communities, especially in the face of habitat disturbance. Many tropical forests are simultaneously affected by animal loss as well as habitat disturbance, but the consequences of each for forest regeneration are often studied separately or additively, and usually on a single plant demographic stage. The combined impacts of these threats could affect plant recruitment in ways that are not apparent when studied in isolation. We used wire cages to exclude large (elephants), medium, (sambar deer, bearded pigs, muntjac deer), and small (porcupines, chevrotains) ground-dwelling mammalian granivores and herbivores in logged and unlogged forests in Malaysian Borneo. We assessed the interaction between habitat disturbance (selective logging) and experimental defaunation on seed survival, germination, and seedling establishment in five dominant dipterocarp tree species spanning a 21-fold gradient in seed size. Granivore-induced seed mortality was consistently higher in logged forest. Germination of unpredated seeds was reduced in logged forest and in the absence of small to large-bodied mammals. Experimental defaunation increased germination and reduced seed removal but had little effect on seed survival. Seedling recruitment however, was more likely where logging and animal loss occurred together. The interacting effects of logging and hunting could therefore, actually increase seedling establishment, suggesting that the loss of mammals in disturbed forest could have important consequences for forest regeneration and composition.
    Matched MeSH terms: Population Dynamics
  2. Yang Y, Li J, Yang S, Li X, Fang L, Zhong C, et al.
    BMC Evol. Biol., 2017 01 18;17(1):22.
    PMID: 28100168 DOI: 10.1186/s12862-016-0849-z
    BACKGROUND: A large-scale systematical investigation of the influence of Pleistocene climate oscillation on mangrove population dynamics could enrich our knowledge about the evolutionary history during times of historical climate change, which in turn may provide important information for their conservation.

    RESULTS: In this study, phylogeography of a mangrove tree Sonneratia alba was studied by sequencing three chloroplast fragments and seven nuclear genes. A low level of genetic diversity at the population level was detected across its range, especially at the range margins, which was mainly attributed to the steep sea-level drop and associated climate fluctuations during the Pleistocene glacial periods. Extremely small effective population size (Ne) was inferred in populations from both eastern and western Malay Peninsula (44 and 396, respectively), mirroring the fragility of mangrove plants and their paucity of robustness against future climate perturbations and human activity. Two major genetic lineages of high divergence were identified in the two mangrove biodiversity centres: the Indo-Malesia and Australasia regions. The estimated splitting time between these two lineages was 3.153 million year ago (MYA), suggesting a role for pre-Pleistocene events in shaping the major diversity patterns of mangrove species. Within the Indo-Malesia region, a subdivision was implicated between the South China Sea (SCS) and the remaining area with a divergence time of 1.874 MYA, corresponding to glacial vicariance when the emerged Sunda Shelf halted genetic exchange between the western and eastern coasts of the Malay Peninsula during Pleistocene sea-level drops. Notably, genetic admixture was observed in populations at the boundary regions, especially in the two populations near the Malacca Strait, indicating secondary contact between divergent lineages during interglacial periods. These interregional genetic exchanges provided ample opportunity for the re-use of standing genetic variation, which could facilitate mangrove establishment and adaptation in new habitats, especially in the context of global climate changes.

    CONCLUSION: Phylogeogrpahic analysis in this study reveal that Pleistocene sea-level fluctuations had profound influence on population differentiation of the mangrove tree S. alba. Our study highlights the fragility of mangrove plants and offers a guide for the conservation of coastal mangrove communities experiencing ongoing changes in sea-level.

    Matched MeSH terms: Population Dynamics
  3. Mat Jaafar TNA, Taylor MI, Mohd Nor SA, Bruyn M, Carvalho GR
    J Fish Biol, 2020 Feb;96(2):337-349.
    PMID: 31721192 DOI: 10.1111/jfb.14202
    We examine genetic structuring in three commercially important species of the teleost family Carangidae from Malaysian waters: yellowtail scad Atule mate, bigeye scad Selar crumenophthalmus and yellowstripe scad Selaroides leptolepis, from the Indo-Malay Archipelago. In view of their distribution across contrasting habitats, we tested the hypothesis that pelagic species display less genetic divergence compared with demersal species, due to their potential to undertake long-distance migrations in oceanic waters. To evaluate population genetic structure, we sequenced two mitochondrial (mt)DNA [650 bp of cytochrome oxidase I (coI), 450 bp of control region (CR)] and one nuclear gene (910 bp of rag1) in each species. One hundred and eighty samples from four geographical regions within the Indo-Malay Archipelago including a population of yellowtail from Kuwait were examined. Findings revealed that the extent of genetic structuring among populations in the semi-pelagic and pelagic, yellowtail and bigeye were lower than demersal yellowstripe, consistent with the hypothesis that pelagic species display less genetic divergence compared with demersal species. The yellowtail phylogeny identified three distinct clades with bootstrap values of 86%-99% in mtDNA and 63%-67% in rag1. However, in bigeye, three clades were also observed from mtDNA data while only one clade was identified in rag1 dataset. In yellowstripe, the mtDNA tree was split into three closely related clades and two clades in rag1 tree with bootstraps value of 73%-99% and 56% respectively. However, no geographic structure appears in both mtDNA and rag1 datasets. Hierarchical molecular variance analysis (AMOVA), pair wise FST comparisons and the nearest-neighbour statistic (Snn ) showed significant genetic differences among Kuwait and Indo-Malay yellowtail. Within the Indo-Malay Archipelago itself, two distinct mitochondrial lineages were detected in yellowtail suggesting potential cryptic species. Findings suggests varying degrees of genetic structuring, key information relevant to management of exploited stocks, though more rapidly evolving genetic markers should be used in future to better delimit the nature and dynamics of putative stock boundaries.
    Matched MeSH terms: Population Dynamics
  4. Asaduzzaman M, Igarashi Y, Wahab MA, Nahiduzzaman M, Rahman MJ, Phillips MJ, et al.
    Genes (Basel), 2019 12 30;11(1).
    PMID: 31905942 DOI: 10.3390/genes11010046
    The migration of anadromous fish in heterogenic environments unceasingly imposes a selective pressure that results in genetic variation for local adaptation. However, discrimination of anadromous fish populations by fine-scale local adaptation is challenging because of their high rate of gene flow, highly connected divergent population, and large population size. Recent advances in next-generation sequencing (NGS) have expanded the prospects of defining the weakly structured population of anadromous fish. Therefore, we used NGS-based restriction site-associated DNA (NextRAD) techniques on 300 individuals of an anadromous Hilsa shad (Tenualosa ilisha) species, collected from nine strategic habitats, across their diverse migratory habitats, which include sea, estuary, and different freshwater rivers. The NextRAD technique successfully identified 15,453 single nucleotide polymorphism (SNP) loci. Outlier tests using the FST OutFLANK and pcadapt approaches identified 74 and 449 SNPs (49 SNPs being common), respectively, as putative adaptive loci under a divergent selection process. Our results, based on the different cluster analyses of these putatively adaptive loci, suggested that local adaptation has divided the Hilsa shad population into two genetically structured clusters, in which marine and estuarine collection sites were dominated by individuals of one genetic cluster and different riverine collection sites were dominated by individuals of another genetic cluster. The phylogenetic analysis revealed that all the riverine populations of Hilsa shad were further subdivided into the north-western riverine (turbid freshwater) and the north-eastern riverine (clear freshwater) ecotypes. Among all of the putatively adaptive loci, only 36 loci were observed to be in the coding region, and the encoded genes might be associated with important biological functions related to the local adaptation of Hilsa shad. In summary, our study provides both neutral and adaptive contexts for the observed genetic divergence of Hilsa shad and, consequently, resolves the previous inconclusive findings on their population genetic structure across their diverse migratory habitats. Moreover, the study has clearly demonstrated that NextRAD sequencing is an innovative approach to explore how dispersal and local adaptation can shape genetic divergence of non-model anadromous fish that intersect diverse migratory habitats during their life-history stages.
    Matched MeSH terms: Population Dynamics
  5. Tey Nai Peng, Tan Boon Ann, Arshat H
    Malays J Reprod Health, 1985 Jun;3(1):46-58.
    PMID: 12314427
    Matched MeSH terms: Population Dynamics
  6. Peng TN
    Malays J Reprod Health, 1986 Dec;4(2):91-6.
    PMID: 12314888
    PIP: In Peninsular Malaysia, while the female population aged 15-19 years registered a growth of some 240,000 persons between 1966-1984, the number of births occurring to teenage mothers has decreased by 15,176 from 33,348 to 18,172 during the same period. In 1966, teenage births constituted some 10.8% of the total births but has declined to 4.7% by 1984. A breakdown of the 1984 data by detailed age groups shows that only 0.9% of the teenage births had actually occurred among those below 15 years of age. The declining trend in teenage births, particularly the higher order births among the very young mothers, augurs well for the improvement in family welfare. However, in order to safeguard the health and welfare of mothers and children, concerted efforts should continue to be undertaken to integrate population, family health and family life education into the school curriculum.
    Matched MeSH terms: Population Dynamics
  7. Gabriel R, Shantharajan A
    Malays J Reprod Health, 1994 Jun;12(1):10-3.
    PMID: 12320336
    PIP: Data from 297 interviews among married patients attending prenatal clinics in Malaysia in 1993 are used to determine the number, spacing, and timing of pregnancies. Only live born children are included. Findings indicate that 92.2% of women were 18-35 years old, 4.2% were under 18 years of age, and 3.6% were over 35 years old. 86.2% had 4 or fewer children and 13.8% had 4 or more children. 69.7% spaced children 2 or more years apart and 30.3% had birth spacing of under 2 years. Over 90% of women had their pregnancies during the ages of 18 and 35 years.
    Matched MeSH terms: Population Dynamics
  8. Abdul Kader H
    Malays J Reprod Health, 1983 Dec;1(2):139-52.
    PMID: 12313335
    Matched MeSH terms: Population Dynamics
  9. Higham C
    Hum Biol, 2013 Feb-Jun;85(1-3):21-43.
    PMID: 24297219
    Anatomically modern hunter-gatherers expanded from Africa into Southeast Asia at least 50,000 years ago, where they probably encountered and interacted with populations of Homo erectus and Homo floresiensis and the recently discovered Denisovans. Simulation studies suggest that these hunter-gatherers may well have followed a coastal route that ultimately led to the settlement of Sahul, while archaeology confirms that they also crossed significant seas and explored well into the interior. They also adapted to marked environmental changes that alternated between relatively cool and dry conditions and warmer, wetter interludes. During the former, the sea fell by up to 120 m below its present level, which opened up a vast low-lying area known as Sundaland. Three principal alignments can be identified: the first involved the occupation of rock shelters in upland regions, the second has identified settlement on broad riverine floodplains, and the last concentrated on the raised beaches formed from about five millennia ago when the sea level was elevated above its present position. This cultural sequence was dislocated about 4 kya when rice and millet farmers infiltrated the lowlands of Southeast Asia ultimately from the Yangtze River valley. It is suggested that this led to two forms of interaction. In the first, the indigenous hunter-gatherers integrated with intrusive Neolithic communities and, while losing their cultural identity, contributed their genes to the present population of Southeast Asia. In the second, hunter-gatherers withdrew to rainforest refugia and, through selective pressures inherent in such an environment, survived as the small-bodied, dark-skinned humans found to this day in the Philippines, Peninsular Malaysia and Thailand, and the Andaman Islands. Beyond the impact of expansive rice farmers in Melanesia and Australia, hunter-gatherers continued to dominate until they encountered European settlement.
    Matched MeSH terms: Population Dynamics
  10. Benjamin G
    Hum Biol, 2013 Feb-Jun;85(1-3):445-84.
    PMID: 24297237
    The primary focus of this article is on the so-called negritos of Peninsular Malaysia and southern Thailand, but attention is also paid to other parts of Southeast Asia. I present a survey of current views on the "negrito" phenotype--is it single or many? If the phenotype is many (as now seems likely), it must have resulted from parallel evolution in the several different regions where it has been claimed to exist. This would suggest (contrary to certain views that have been expressed on the basis of very partial genetic data) that the phenotype originated recently and by biologically well-authenticated processes from within the neighboring populations. Whole-genome and physical-anthropological research currently support this view. Regardless of whether the negrito phenotype is ancient or recent-and to the extent that it retains any valid biological reality (which is worth questioning)-explanations are still needed for its continued distinctiveness. In the Malay Peninsula, a distinctive "Semang" societal pattern followed by most, but not all, so-called negritos may have been responsible for this by shaping familial, breeding, and demographic patterns to suit the two main modes of environmental appropriation that they have followed, probably for some millennia: nomadic foraging in the forest, and facultative dependence on exchange or labor relations with neighboring populations. The known distribution of "negritos" in the Malay Peninsula is limited to areas within relatively easy reach of archaeologically authenticated premodern transpeninsular trading and portage routes, as well as of other non-negrito, Aslian-speaking populations engaged in swidden farming. This suggests that their continued distinctiveness has resulted from a wish to maintain a complementary advantage vis-à-vis other, less specialized populations. Nevertheless, a significant degree of discordance exists between the associated linguistic, societal-tradition, and biological patterns which suggests that other factors have also been at play.
    Matched MeSH terms: Population Dynamics
  11. Voigt M, Wich SA, Ancrenaz M, Meijaard E, Abram N, Banes GL, et al.
    Curr Biol, 2018 03 05;28(5):761-769.e5.
    PMID: 29456144 DOI: 10.1016/j.cub.2018.01.053
    Unsustainable exploitation of natural resources is increasingly affecting the highly biodiverse tropics [1, 2]. Although rapid developments in remote sensing technology have permitted more precise estimates of land-cover change over large spatial scales [3-5], our knowledge about the effects of these changes on wildlife is much more sparse [6, 7]. Here we use field survey data, predictive density distribution modeling, and remote sensing to investigate the impact of resource use and land-use changes on the density distribution of Bornean orangutans (Pongo pygmaeus). Our models indicate that between 1999 and 2015, half of the orangutan population was affected by logging, deforestation, or industrialized plantations. Although land clearance caused the most dramatic rates of decline, it accounted for only a small proportion of the total loss. A much larger number of orangutans were lost in selectively logged and primary forests, where rates of decline were less precipitous, but where far more orangutans are found. This suggests that further drivers, independent of land-use change, contribute to orangutan loss. This finding is consistent with studies reporting hunting as a major cause in orangutan decline [8-10]. Our predictions of orangutan abundance loss across Borneo suggest that the population decreased by more than 100,000 individuals, corroborating recent estimates of decline [11]. Practical solutions to prevent future orangutan decline can only be realized by addressing its complex causes in a holistic manner across political and societal sectors, such as in land-use planning, resource exploitation, infrastructure development, and education, and by increasing long-term sustainability [12]. VIDEO ABSTRACT.
    Matched MeSH terms: Population Dynamics
  12. Zhan X, Adnan A, Zhou Y, Khan A, Kasim K, McNevin D
    Sci Rep, 2018 03 16;8(1):4673.
    PMID: 29549272 DOI: 10.1038/s41598-018-22975-6
    The Xinjiang Uyghur Autonomous Region of China (XUARC) harbors 47 ethnic groups including the Manchu (MCH: 0.11%), Mongols (MGL: 0.81%), Kyrgyz (KGZ: 0.86%) and Uzbek (UZK: 0.066%). To establish DNA databases for these populations, allele frequency distributions for 15 autosomal short tandem repeat (STR) loci were determined using the AmpFlSTR Identifiler PCR amplification kit. There was no evidence of departures from Hardy-Weinberg equilibrium (HWE) in any of the four populations and minimal departure from linkage equilibrium (LE) for a very small number of pairwise combinations of loci. The probabilities of identity for the different populations ranged from 1 in 1.51 × 1017 (MCH) to 1 in 9.94 × 1018 (MGL), the combined powers of discrimination ranged from 0.99999999999999999824 (UZK) to 0.9999999999999999848 (MCH) and the combined probabilities of paternal exclusion ranged from 0.9999979323 (UZK) to 0.9999994839 (MCH). Genetic distances, a phylogenetic tree and principal component analysis (PCA) revealed that the MCH, KGZ and UZK are genetically closer to the Han population of Liaoning and the Mongol population of Mongolia while the MGL are closer to Han, Japanese, Korean, Malaysian, Hong Kong Han and Russians living in China.
    Matched MeSH terms: Population Dynamics
  13. Roslan MA, Ngui R, Vythilingam I, Sulaiman WYW
    J Vector Ecol, 2017 12;42(2):298-307.
    PMID: 29125255 DOI: 10.1111/jvec.12270
    The present study compared the performance of sticky traps in order to identify the most effective and practical trap for capturing Aedes aegypti and Aedes albopictus mosquitoes. Three phases were conducted in the study, with Phase 1 evaluating the five prototypes (Models A, B, C, D, and E) of sticky trap release-and-recapture using two groups of mosquito release numbers (five and 50) that were released in each replicate. Similarly, Phase 2 compared the performance between Model E and the classical ovitrap that had been modified (sticky ovitrap), using five and 50 mosquito release numbers. Further assessment of both traps was carried out in Phase 3, in which both traps were installed in nine sampling grids. Results from Phase 1 showed that Model E was the trap that recaptured higher numbers of mosquitoes when compared to Models A, B, C, and D. Further assessment between Model E and the modified sticky ovitrap (known as Model F) found that Model F outperformed Model E in both Phases 2 and 3. Thus, Model F was selected as the most effective and practical sticky trap, which could serve as an alternative tool for monitoring and controlling dengue vectors in Malaysia.
    Matched MeSH terms: Population Dynamics
  14. Affandi FA, Ishak MY
    Environ Sci Pollut Res Int, 2019 Jun;26(17):16939-16951.
    PMID: 31028621 DOI: 10.1007/s11356-019-05137-7
    Mining activities are responsible for the elevated input levels of suspended sediment and hazardous metals into the riverine ecosystem. These have been shown to threaten the riverine fish populations and can even lead to localized population extinction. To date, research on the effects of mining activities on fish has been focused within metal contamination and bioaccumulation and its threat to human consumption, neglecting the effects of suspended sediment. This paper reviews the effects of suspended sediment and metal pollution on riverine ecosystem and fish population by examining the possibilities of genetic changes and population extinction. In addition, possible assessments and studies of the riverine fish population are discussed to cope with the risks from mining activities and fish population declines.
    Matched MeSH terms: Population Dynamics
  15. Hill JK, Gray MA, Khen CV, Benedick S, Tawatao N, Hamer KC
    Philos Trans R Soc Lond B Biol Sci, 2011 Nov 27;366(1582):3265-76.
    PMID: 22006967 DOI: 10.1098/rstb.2011.0050
    Large areas of tropical forest now exist as remnants scattered across agricultural landscapes, and so understanding the impacts of forest fragmentation is important for biodiversity conservation. We examined species richness and nestedness among tropical forest remnants in birds (meta-analysis of published studies) and insects (field data for fruit-feeding Lepidoptera (butterflies and moths) and ants). Species-area relationships were evident in all four taxa, and avian and insect assemblages in remnants typically were nested subsets of those in larger areas. Avian carnivores and nectarivores and predatory ants were more nested than other guilds, implying that the sequential loss of species was more predictable in these groups, and that fragmentation alters the trophic organization of communities. For butterflies, the ordering of fragments to achieve maximum nestedness was by fragment area, suggesting that differences among fragments were driven mainly by extinction. In contrast for moths, maximum nestedness was achieved by ordering species by wing length; species with longer wings (implying better dispersal) were more likely to occur at all sites, including low diversity sites, suggesting that differences among fragments were driven more strongly by colonization. Although all four taxa exhibited high levels of nestedness, patterns of species turnover were also idiosyncratic, and thus even species-poor sites contributed to landscape-scale biodiversity, particularly for insects.
    Matched MeSH terms: Population Dynamics
  16. Xing J, Watkins WS, Witherspoon DJ, Zhang Y, Guthery SL, Thara R, et al.
    Genome Res, 2009 May;19(5):815-25.
    PMID: 19411602 DOI: 10.1101/gr.085589.108
    We report an analysis of more than 240,000 loci genotyped using the Affymetrix SNP microarray in 554 individuals from 27 worldwide populations in Africa, Asia, and Europe. To provide a more extensive and complete sampling of human genetic variation, we have included caste and tribal samples from two states in South India, Daghestanis from eastern Europe, and the Iban from Malaysia. Consistent with observations made by Charles Darwin, our results highlight shared variation among human populations and demonstrate that much genetic variation is geographically continuous. At the same time, principal components analyses reveal discernible genetic differentiation among almost all identified populations in our sample, and in most cases, individuals can be clearly assigned to defined populations on the basis of SNP genotypes. All individuals are accurately classified into continental groups using a model-based clustering algorithm, but between closely related populations, genetic and self-classifications conflict for some individuals. The 250K data permitted high-level resolution of genetic variation among Indian caste and tribal populations and between highland and lowland Daghestani populations. In particular, upper-caste individuals from Tamil Nadu and Andhra Pradesh form one defined group, lower-caste individuals from these two states form another, and the tribal Irula samples form a third. Our results emphasize the correlation of genetic and geographic distances and highlight other elements, including social factors that have contributed to population structure.
    Matched MeSH terms: Population Dynamics
  17. Teo P
    GeoJournal, 1991 Feb;23(2):125-33.
    PMID: 12317879
    Matched MeSH terms: Population Dynamics
  18. Ali WN, Ahmad R, Nor ZM, Ismail Z, Lim LH
    PMID: 21710845
    Mosquitoes in malaria endemic areas needs to be monitored constantly in order to detect demographic changes that could affect control measures. A 12-month mosquito population survey was conducted in several malaria endemic areas in Pos Lenjang, Kuala Lipis, Pahang, Malaysia. Collection of mosquitoes using a human landing catch technique was carried out indoors and outdoors for 12 hours from 7:00 PM to 7:00 AM for 42 nights. Anopheles maculatus Theobald (31.0%), Armigeres flavus Leicester (11.3%), Armigeres annulitarsis Leicester (11.0%), Culex vishnui Theobald (9.6%) and Aedes albopictus Skuse (7.0%) were the predominant species caught in the study area. The salivary gland and midgut of all anopheline mosquitoes were dissected to determine the presence of malaria parasites but none were positive. A high rate of human biting by An. maculatus was detected during December, but the rate was lower in January. Mosquito larvae were carried by the rapid current of the river downstream causing a decrease in the larvae population. Of the five predominant species, only Ar. annulitarsis exhibited a significant positive correlation in numbers with monthly rainfall (p < 0.05). An. maculatus biting activity peaked during 10:00 PM to 11:00 PM. Ae. albopictus, Ar. annulitarsis, and Ar. flavus exhibited similar activities which peaked during 7:00 PM to 8.00 PM.
    Matched MeSH terms: Population Dynamics
  19. Strickland SS, Duffield AE
    Asia Pac J Clin Nutr, 1998 Dec;7(3/4):300-6.
    PMID: 24393688
    The effects of population pressure on agricultural sustainability in the delicate tropical and subtropical ecosystems have often been thought to explain high prevalence rates of malnutrition in rural South-East Asia. However, recent studies in rural Sarawak suggest that processes of modernisation have resulted in increased variations in energy nutritional status in adults. A contributory factor may be consumption of the areca nut (Malay pinang, of the palm Areca catechu). This is thought to influence energy balance through effects on appetite and resting metabolic rate. Body mass index (BMI, kg/m2) data for 325 Iban men and 438 non-pregnant Iban women, measured in 1990 and again in 1996, have been analysed in relation to areca use, smoking behaviour, socio-economic status, and reported morbidity. Body composition derived from skinfold thickness measurements for 313 men and 382 women was also analysed. The results suggest that use of areca nut is associated with significantly lower age-related increments in BMI and percentage body fat in women after allowing for age, smoking, reported morbidity, and confounding socio-economic factors. Therefore, the impact of recent economic and social development seen in rising prevalences of 'over-nutrition' may be modulated by use of the areca nut.
    Matched MeSH terms: Population Dynamics
Filters
Contact Us

Please provide feedback to Administrator ([email protected])

External Links